期刊论文详细信息
BMC Systems Biology
Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli
Zoran Nikoloski1  Szymon Jozefczuk2  Nadine Töpfer1 
[1] Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany;ETH Zurich, Institute of Molecular Systems Biology, 8093 Zurich, Switzerland
关键词: Adaptation;    Network optimization;    Genome-scale metabolic network;    Flux-based methods;   
Others  :  1143453
DOI  :  10.1186/1752-0509-6-148
 received in 2012-05-01, accepted in 2012-11-07,  发布年份 2012
PDF
【 摘 要 】

Background

Changes in environmental conditions require temporal effectuation of different metabolic pathways in order to maintain the organisms’ viability but also to enable the settling into newly arising conditions. While analyses of robustness in biological systems have resulted in the characterization of reactions that facilitate homeostasis, temporal adaptation-related processes and the role of cellular pathways in the metabolic response to changing conditions remain elusive.

Results

Here we develop a flux-based approach that allows the integration of time-resolved transcriptomics data with genome-scale metabolic networks. Our framework uses bilevel optimization to extract temporal minimal operating networks from a given large-scale metabolic model. The minimality of the extracted networks enables the computation of elementary flux modes for each time point, which are in turn used to characterize the transitional behavior of the network as well as of individual reactions. Application of the approach to the metabolic network of Escherichia coli in conjunction with time-series gene expression data from cold and heat stress results in two distinct time-resolved modes for reaction utilization—constantly active and temporally (de)activated reactions. These patterns contrast the processes for the maintenance of basic cellular functioning and those required for adaptation. They also allow the prediction of reactions involved in time- and stress-specific metabolic response and are verified with respect to existing experimental studies.

Conclusions

Altogether, our findings pinpoint the inherent relation between the systemic properties of robustness and adaptability arising from the interplay of metabolic network structure and changing environment.

【 授权许可】

   
2012 Töpfer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329082042886.pdf 1149KB PDF download
Figure 3Figure 3. 82KB Image download
Figure 2. 40KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3Figure 3.

【 参考文献 】
  • [1]Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60(10):3724-3731.
  • [2]Leroi AM, Bennett AF, Lenski RE: Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Nat Acad Sci USA 1994, 91(5):1917-1921.
  • [3]Kitano H: Biological robustness. Nat Rev Gene 2004, 5(11):826-837.
  • [4]Larhlimi A, Blachon S, Selbig J, Nikoloski Z: Robustness of metabolic networks: A review of existing definitions. Bio Syst 2011, 106:1-8.
  • [5]Alon U, Surette MG, Barkai N, Leibler S: Robustness in bacterial chemotaxis. Nature 1999, 397(6715):168-171.
  • [6]Barkai N, Leibler S: Robustness in simple biochemical networks to transfer and process information. Nature 1997, 387(6636):913-917.
  • [7]Kitano H: Towards a theory of biological robustness. Mol Syst Biol 2007, 3:137.
  • [8]Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002, 18(suppl 1):S233—S240.
  • [9]Akesson M, Förster J, Nielsen J: Integration of gene expression data into genome-scale metabolic models. Metab Eng 2004, 6(4):285-293.
  • [10]Shlomi T, Cabili MN, Herrgård MJ, Palsson BO, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008, 26(9):1003-1010.
  • [11]Jensen PA, Papin JA: Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics (Oxford, England) 2011, 27(4):541-547.
  • [12]Schuster S, Hilgetag C: On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 1994, 2(2):165-182.
  • [13]Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED: Metabolic network structure determines key aspects of functionality and regulation. Nature 2002, 420(6912):190-193.
  • [14]de Figueiredo LF, Schuster S, Kaleta C, Fell DA: Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics (Oxford, England) 2008, 24(22):2615-2621.
  • [15]de Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, Schuster S, Planes FJ: Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics (Oxford, England) 2009, 25(23):3158-3165.
  • [16]Kaleta C, de Figueiredo LF, Schuster S, Figueiredo FD, Jena D: Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns - supplementary material - input-species. Math Oper Res 2009, 19(10):1-8.
  • [17]Machado D, Soons Z, Patil KR, Ferreira EC, Rocha I: Random sampling of elementary flux modes in large-scale metabolic networks. Bioinformatics 2012, 28(18):i515—i521.
  • [18]Terzer M, Stelling J: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics (Oxford, England) 2008, 24(19):2229-2235.
  • [19]Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L: Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 2010, 6:364.
  • [20]Hellwig B, Hengstler JG, Schmidt M, Gehrmann MC, Schormann W, Rahnenführer J: Comparison of scores for bimodality of gene expression distributions and genome-wide evaluation of the prognostic relevance of high-scoring genes. BMC Bioinformatics 2010, 11:276. BioMed Central Full Text
  • [21]Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4(9):R54. BioMed Central Full Text
  • [22]Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE: Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009, 5(8):e1000489.
  • [23]Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotechnol 2010, 28(3):245-8.
  • [24]Burgard AP, Pharkya P, Maranas CD: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003, 84(6):647-657.
  • [25]Heinrich R, Schuster S: The Regulation Of Cellular Systems. New York: Chapman and Hall; 1996.
  • [26]Vanderbei RJ: Linear Programming: Foundations and Extensions. Boston: Kluwer Academic; 1996.
  • [27]Arroyo J, Galiana F: On the Solution of the Bilevel Programming Formulation of the Terrorist Threat Problem. IEEE Trans Power Syst 2005, 20(2):789-797.
  • [28]Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119.
  • [29]Ritz D, Beckwith J: Roles of thiolredox pathways in bacteria. Microbiology 2001, 55:21-48.
  • [30]Gadgil M, Kapur V, Hu WS: Transcriptional response of Escherichia coli to temperature shift. Biotechno Prog 21(3):689-699.
  • [31]Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T: Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell Proteomics : MCP 2012, 11:M111.009019.
  文献评价指标  
  下载次数:27次 浏览次数:23次