期刊论文详细信息
BMC Genomics
Identification of genes required for the survival of B. fragilis using massive parallel sequencing of a saturated transposon mutant library
Hannah M Wexler3  Elizabeth L Tenorio2  Fasahath Husain1  Yaligara Veeranagouda3 
[1] GLAVAHCS, Bldg. 115 Room 312 11301 Wilshire Blvd, Los Angeles, CA 90073, USA;Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, MA 02111, USA;UCLA School of Medicine, Los Angeles, CA, USA
关键词: DEG;    COG;    Massively parallel sequencing;    Essential genes;    Transposon mutants;    Bacteroides fragilis;   
Others  :  1216722
DOI  :  10.1186/1471-2164-15-429
 received in 2014-03-05, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

Bacteroides fragilis is a Gram-negative anaerobe that is normally a human gut commensal; it comprises a small percentage of the gut Bacteroides but is the most frequently isolated Bacteroides from human infections. Identification of the essential genes necessary for the survival of B. fragilis provides novel information which can be exploited for the treatment of bacterial infections.

Results

Massive parallel sequencing of saturated transposon mutant libraries (two mutant pools of approximately 50,000 mutants each) was used to determine the essential genes for the growth of B. fragilis 638R on nutrient rich medium. Among the 4326 protein coding genes, 550 genes (12.7%) were found to be essential for the survival of B. fragilis 638R. Of the 550 essential genes, only 367 genes were assigned to a Cluster of Orthologous Genes, and about 290 genes had Kyoto Encyclopedia of Genes and Genomes orthologous members. Interestingly, genes with hypothetical functions accounted for 41.3% of essential genes (227 genes), indicating that the functions of a significant percentage of the genes used by B. fragilis 638R are still unknown. Global transcriptome analysis using RNA-Seq indicated that most of the essential genes (92%) are, in fact, transcribed in B. fragilis 638R including most of those coding for hypothetical proteins. Three hundred fifty of the 550 essential genes of B. fragilis 638R are present in Database of Essential Genes. 10.02 and 31% of those are genes included as essential genes for nine species (including Gram-positive pathogenic bacteria).

Conclusions

The essential gene data described in this investigation provides a valuable resource to study gene function and pathways involved in B. fragilis survival. Thorough examination of the B. fragilis-specific essential genes and genes that are shared between divergent organisms opens new research avenues that will lead to enhanced understanding of survival strategies used by bacteria in different microniches and under different stress situations.

【 授权许可】

   
2014 Veeranagouda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702035813191.pdf 3041KB PDF download
Figure 6. 31KB Image download
Figure 5. 56KB Image download
Figure 4. 173KB Image download
Figure 3. 70KB Image download
Figure 2. 186KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The human microbiome project. Nature 2007, 449:804-810.
  • [2]Wareham DW, Wilks M, Ahmed D, Brazier JS, Millar M: Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin Inf Dis 2005, 40:e67-e68.
  • [3]Brook I: The role of anaerobic bacteria in bacteremia. Anaerobe 2010, 16:183-189.
  • [4]Wexler HM: Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007, 20:593-621.
  • [5]Troy EB, Kasper DL: Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Frontiers bioscience (Landmark edition) 2010, 15:25-34.
  • [6]Baughn AD, Malamy MH: The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004, 427:441-444.
  • [7]Houston S, Blakely G, McDowell A, Martin L, Patrick S: Binding and degradation of fibrinogen by Bacteroides fragilis and characterization of a 54 kDa fibrinogen-binding protein. Microbiol 2010, 156:2516-2526.
  • [8]Connolly JC, McLean C, Tabaqchali S: The effect of capsular polysaccharide and lipopolysaccharide of Bacteroides fragilis on polymorph function and serum killing. J Med Microbiol 1984, 17:259-271.
  • [9]Patrick S, Blakely GW, Houston S, Moore J, Abratt VR, Bertalan M, Cerdeño-Tárraga AM, Quail MA, Corton N, Corton C, Bignell A, Barron A, Clark L, Bentley SD, Parkhill J: Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiol 2010, 156:3255-3269.
  • [10]Coyne MJ, Tzianabos AO, Mallory BC, Carey VJ, Kasper DL, Comstock LE: Polysaccharide Biosynthesis Locus Required for Virulence of Bacteroides fragilis Polysaccharide Biosynthesis Locus Required for Virulence of Bacteroides fragilis. Infect Immun 2001, 69:4342-4350.
  • [11]Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G, Jobling K, Patrick S: Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 2011, 17:152-155.
  • [12]Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V, Wexler HM: Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 2013, 57:3767-3774.
  • [13]Baugh L, Gallagher L, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Fox D, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Van Voorhis WC: Combining functional and structural genomics to sample the essential Burkholderia structome. PLoS One 2013, 8:e53851.
  • [14]Goodman AL, Wu M, Gordon JI: Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 2011, 6:1969-1980.
  • [15]Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ: High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 2012, 10:599-606.
  • [16]Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM: High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 2011, 7:e1002251.
  • [17]Khatiwara A, Jiang T, Sung SS, Dawoud T, Kim JN, Bhattacharya D, Kim HB, Ricke SC, Kwon YM: Genome scanning for conditionally essential genes in Salmonella enterica Serotype Typhimurium. Appl Environ Microbiol 2012, 78:3098-3107.
  • [18]Salama NR, Shepherd B, Falkow S: Global Transposon Mutagenesis and Essential Gene Analysis of Helicobacter pylori. J Bacteriol 2004, 186:7926-7935.
  • [19]Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM: An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 2006, 103:2833-2838.
  • [20]Luo H, Lin Y, Gao F, Zhang CT, Zhang R: DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2013, 42:D574-D580.
  • [21]Klein B, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT: Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 2012, 13:578. BioMed Central Full Text
  • [22]Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko K, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:1-11.
  • [23]Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Débarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, et al.: Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 200, 100:4678-4683.
  • [24]Cerdeno Tarraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA, Barron A, Clark L, Corton C, Doggett J, Holden MT, Larke N, Line A, Lord A, Norbertczak H, Ormond D, Price C, Rabbinowitsch E, Woodward J, Barrell B, Parkhill J: Extensive DNA inversions in the B. fragilis genome control variable gene expression: Supplemental online material. Science 2005, 307:1463-1465.
  • [25]Veeranagouda Y, Husain F, Wexler H: Transposon mutagenesis of Bacteroides fragilis using a mariner transposon vector. Anaerobe 2013, 22:126-129.
  • [26]Rasmussen BA, Kovacs E: Cloning and identification of a two-component signal-transducing regulatory system from Bacteroides fragilis. Mol Microbiol 1993, 7:765-776.
  • [27]Krishnan K, Duncan M: Role of sodium in the RprY-dependent stress response in Porphyromonas gingivalis. PLoS One 2013, 8:e63180.
  • [28]Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H, Okada N, Kuhara S, Hattori M, Hayashi T, Ohnishi Y: Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A 2004, 101:14919-14924.
  • [29]Chaudhuri R, Allen A, Owen P, Shalom G, Stone K, Harrison M, Burgis T, Lockyer M, Garcia-Lara J, Foster S, Pleasance S, Peters S, Maskell D, Charles I: Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 2009, 10:291. BioMed Central Full Text
  • [30]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18:1509-1517.
  • [31]Wexler H, Tenorio E, Pumbwe L: Characteristics of Bacteroides fragilis lacking the major outer membrane protein, OmpA. Microbiol 2009, 155:2694-2706.
  • [32]Wexler H: Pump it up: occurrence and regulation of multi-drug efflux pumps in Bacteroides fragilis. Anaerobe 2012, 18:200-208.
  • [33]Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC: IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 2012, 40:D115-D122.
  • [34]Alikhan NF, Petty N, Ben Zakour N, Beatson S: BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011, 12:402. BioMed Central Full Text
  • [35]Kelley LA, Sternberg MJ: Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009, 4:363-371.
  文献评价指标  
  下载次数:47次 浏览次数:9次