期刊论文详细信息
BMC Medical Genomics
MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones
Adolfo Díez-Pérez3  Natalia García-Giralt2  Daniel Grinberg4  Xavier Nogués3  Roser Urreizti4  Leonardo Mellibovsky3  Santos Martinez-Diaz1  Robert Güerri-Fernández3  Susana Balcells4  Guy Yoskovitz2  Laura De-Ugarte2 
[1] Orthopaedic Surgery and Traumatology Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain;Musculoskeletal research group, IMIM (Hospital del Mar Medical Research Institute), Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, Barcelona, Spain;Internal Medicine Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain;Departament de Genètica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Universitat de Barcelona, IBUB, Barcelona, Spain
关键词: Epigenetic regulation;    Fracture;    Osteoblast;    microRNAs;    Osteoporosis;   
Others  :  1233841
DOI  :  10.1186/s12920-015-0149-2
 received in 2015-03-05, accepted in 2015-10-30,  发布年份 2015
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are important regulators of gene expression, with documented roles in bone metabolism and osteoporosis, suggesting potential therapeutic targets. Our aim was to identify miRNAs differentially expressed in fractured vs nonfractured bones. Additionally, we performed a miRNA profiling of primary osteoblasts to assess the origin of these differentially expressed miRNAs.

Methods

Total RNA was extracted from (a) fresh femoral neck trabecular bone from women undergoing hip replacement due to either osteoporotic fracture (OP group, n = 6) or osteoarthritis in the absence of osteoporosis (Control group, n = 6), matching the two groups by age and body mass index, and (b) primary osteoblasts obtained from knee replacement due to osteoarthritis (n = 4). Samples were hybridized to a microRNA array containing more than 1900 miRNAs. Principal component analysis (PCA) plots and heat map hierarchical clustering were performed. For comparison of expression levels, the threshold was set at log fold change > 1.5 and a p-value < 0.05 (corrected for multiple testing).

Results

Both PCA and heat map analyses showed that the samples clustered according to the presence or absence of fracture. Overall, 790 and 315 different miRNAs were detected in fresh bone samples and in primary osteoblasts, respectively, 293 of which were common to both groups. A subset of 82 miRNAs was differentially expressed (p < 0.05) between osteoporotic and control osteoarthritic samples.

The eight miRNAs with the lowest p-values (and for which a validated miRNA qPCR assay was available) were assayed, and two were confirmed: miR-320a and miR-483-5p. Both were over-expressed in the osteoporotic samples and expressed in primary osteoblasts. miR-320a is known to target CTNNB1 and predicted to regulate RUNX2 and LEPR, while miR-483-5p down-regulates IGF2. We observed a reduction trend for this target gene in the osteoporotic bone.

Conclusions

We identified two osteoblast miRNAs over-expressed in osteoporotic fractures, which opens novel prospects for research and therapy.

【 授权许可】

   
2015 De-Ugarte et al.

【 预 览 】
附件列表
Files Size Format View
20151123023944545.pdf 963KB PDF download
Fig. 6. 3KB Image download
Fig. 5. 10KB Image download
Fig. 4. 12KB Image download
Fig. 3. 22KB Image download
Fig. 2. 12KB Image download
Fig. 1. 36KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Zhang B, Pan X, Cobb GP, Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol 2007, 302(1):1-12.
  • [2]Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, et al.: MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 2012, 8(4):212-227.
  • [3]Taipaleenmaki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M: Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 2012, 166(3):359-371.
  • [4]van Wijnen AJ, van de Peppel J, van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ, et al.: MicroRNA functions in Osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 2013, 11(2):72-82.
  • [5]Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, et al.: A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009, 119(12):3666-3677.
  • [6]Lei SF, Papasian CJ, Deng HW: Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res 2011, 26(1):72-78.
  • [7]Seeliger C, Karpinski K, Haug A, Vester H, Schmitt A, Bauer J, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with Osteoporotic fractures. J Bone Miner Res. 2014.
  • [8]Garmilla-Ezquerra P, Sanudo C, Delgado-Calle J, Perez-Nunez MI, Sumillera M, Riancho JA: Analysis of the bone MicroRNome in Osteoporotic fractures. Calcif Tissue Int 2014.
  • [9]Guo L, Zhao RC, Wu Y: The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 2011, 39(6):608-616.
  • [10]Kapinas K, Delany AM: MicroRNA biogenesis and regulation of bone remodeling. Arthritis Res Ther 2011, 13(3):220. BioMed Central Full Text
  • [11]Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, et al.: A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007, 23(20):2700-2707.
  • [12]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 1995, 57:289-300.
  • [13]Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al.: DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 2012, 40(Web Server issue):W498-W504.
  • [14]Cai Y, Chen H, Jin L, You Y, Shen J: STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage. Parasit Vectors 2013, 6:356. BioMed Central Full Text
  • [15]Gong J, Liu R, Zhuang R, Zhang Y, Fang L, Xu Z, et al.: miR-30c-1* promotes natural killer cell cytotoxicity against human hepatoma cells by targeting the transcription factor HMBOX1. Cancer Sci 2012, 103(4):645-652.
  • [16]Kim DH, Saetrom P, Snove O Jr, Rossi JJ: MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 2008, 105(42):16230-16235.
  • [17]Gordeladze JO, Reseland JE, Duroux-Richard I, Apparailly F, Jorgensen C: From stem cells to bone: phenotype acquisition, stabilization, and tissue engineering in animal models. ILAR J 2009, 51(1):42-61.
  • [18]Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, et al.: MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin. Biochem Biophys Res Commun 2012, 420(4):787-792.
  • [19]Yu F, Cui Y, Zhou X, Zhang X, Han J: Osteogenic differentiation of human ligament fibroblasts induced by conditioned medium of osteoclast-like cells. Biosci Trends 2011, 5(2):46-51.
  • [20]Hamam D, Ali D, Vishnubalaji R, Hamam R, Al-Nbaheen M, Chen L, et al.: microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis 2014, 5:e1499.
  • [21]Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E: MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer 2011, 117(8):1630-1639.
  • [22]Yu X, Zhang X, Bi T, Ding Y, Zhao J, Wang C, et al.: MiRNA expression signature for potentially predicting the prognosis of ovarian serous carcinoma. Tumour Biol 2013, 34(6):3501-3508.
  • [23]Zuntini M, Salvatore M, Pedrini E, Parra A, Sgariglia F, Magrelli A, et al.: MicroRNA profiling of multiple osteochondromas: identification of disease-specific and normal cartilage signatures. Clin Genet 2010, 78(6):507-516.
  • [24]Diaz-Prado S, Cicione C, Muinos-Lopez E, Hermida-Gomez T, Oreiro N, Fernandez-Lopez C, et al.: Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord 2012, 13:144. BioMed Central Full Text
  • [25]Dai N, Zhong ZY, Cun YP, Qing Y, Chen C, Jiang P, et al.: Alteration of the microRNA expression profile in human osteosarcoma cells transfected with APE1 siRNA. Neoplasma 2013, 60(4):384-394.
  • [26]Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, et al.: The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev 2013, 27(23):2543-2548.
  • [27]Ma N, Wang X, Qiao Y, Li F, Hui Y, Zou C, et al.: Coexpression of an intronic microRNA and its host gene reveals a potential role for miR-483-5p as an IGF2 partner. Mol Cell Endocrinol 2011, 333(1):96-101.
  • [28]Qi Y, Ma N, Yan F, Yu Z, Wu G, Qiao Y, et al.: The expression of intronic miRNAs, miR-483 and miR-483*, and their host gene, Igf2, in murine osteoarthritis cartilage. Int J Biol Macromol 2013, 61:43-49.
  • [29]Minuto F, Palermo C, Arvigo M, Barreca AM: The IGF system and bone. J Endocrinol Invest 2005, 28(8 Suppl):8-10.
  • [30]Baron R, Kneissel M: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013, 19(2):179-192.
  文献评价指标  
  下载次数:43次 浏览次数:18次