期刊论文详细信息
BMC Genetics
Characterization of the biological processes shaping the genetic structure of the Italian population
Silvia Bione1  Eugenio A. Parati3  Giorgio B. Boncoraglio3  Enrico B. Nicolis2  Simona Barlera2  Anna Maria Di Blasio4  Davide Gentilini4  Antonella Lisa1  Silvia Parolo1 
[1] Computational Biology Unit, Institute of Molecular Genetics-National Research Council, Pavia, Italy;Department of Cardiovascular Research, IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy;Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy;Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
关键词: LincRNA;    Pathogen;    Immunity;    Latitude;   
Others  :  1233175
DOI  :  10.1186/s12863-015-0293-x
 received in 2015-09-02, accepted in 2015-11-03,  发布年份 2015
PDF
【 摘 要 】

Background

The genetic structure of human populations is the outcome of the combined action of different processes such as demographic dynamics and natural selection. Several efforts toward the characterization of population genetic architectures and the identification of adaptation signatures were recently made. In this study, we provide a genome-wide depiction of the Italian population structure and the analysis of the major determinants of the current existing genetic variation.

Results

We defined and characterized 210 genomic loci associated with the first Principal Component calculated on the Italian genotypic data and correlated to the North–south genetic gradient. Using a gene-enrichment approach we identified the immune function as primarily involved in the Italian population differentiation and we described a locus on chromosome 13 showing combined evidence of North–south diversification in allele frequencies and signs of recent positive selection. In this region our bioinformatics analysis pinpointed an uncharacterized long intergenic non-coding (lincRNA), whose expression appeared specific for immune-related tissues suggesting its relevance for the immune function.

Conclusions

Our study, combining population genetic analyses with biological insights provides a description of the Italian genetic structure that in future could contribute to the evaluation of complex diseases risk in the population context.

【 授权许可】

   
2015 Parolo et al.

【 预 览 】
附件列表
Files Size Format View
20151119012712137.pdf 1121KB PDF download
Fig. 3. 76KB Image download
Fig. 2. 38KB Image download
Fig. 1. 41KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Myles S, Tang K, Somel M, Green RE, Kelso J, Stoneking M. Identification and analysis of genomic regions with large between-population differentiation in humans. Ann Hum Genet. 2008; 72(Pt 1):99-110.
  • [2]Moonesinghe R, Ioannidis JP, Flanders WD, Yang Q, Truman BI, Khoury MJ. Estimating the contribution of genetic variants to difference in incidence of disease between population groups. Eur J Hum Genet. 2012; 20(8):831-836.
  • [3]Corona E, Chen R, Sikora M, Morgan AA, Patel CJ, Ramesh A et al.. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration. PLoS Genet. 2013; 9(5):e1003447.
  • [4]Raj T, Kuchroo M, Replogle JM, Raychaudhuri S, Stranger BE, De Jager PL. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am J Hum Genet. 2013; 92(4):517-529.
  • [5]Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A et al.. Genes mirror geography within Europe. Nature. 2008; 456(7218):98-101.
  • [6]Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A et al.. Correlation between genetic and geographic structure in Europe. Curr Biol. 2008; 18(16):1241-1248.
  • [7]Nelis M, Esko T, Mägi R, Zimprich F, Zimprich A, Toncheva D et al.. Genetic structure of Europeans: A view from the North-East. PLoS One. 2009; 4(5):e5472.
  • [8]Cavalli-Sforza LL, Menozzi P, Piazza A. The history and geography of human genes. Princeton University Press, Princeton; 1994.
  • [9]Di Gaetano C, Voglino F, Guarrera S, Fiorito G, Rosa F, Di Blasio AM et al.. An overview of the genetic structure within the Italian population from genome-wide data. PLoS One. 2012; 7(9):e43759.
  • [10]Soares P, Achilli A, Semino O, Davies W, Macaulay V, Bandelt HJ et al.. The archaeogenetics of Europe. Curr Biol. 2010; 20(4):R174-183.
  • [11]Akey JM. Constructing genomic maps of positive selection in humans: Where do we go from here? Genome Res. 2009; 19(5):711-722.
  • [12]Scheinfeldt LB, Tishkoff SA. Recent human adaptation: Genomic approaches, interpretation and insights. Nat Rev Genet. 2013; 14(10):692-702.
  • [13]Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA et al.. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004; 74(6):1111-1120.
  • [14]Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: Hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010; 20(4):R208-215.
  • [15]Turchin MC, Chiang CW, Palmer CD, Sankararaman S, Reich D, Hirschhorn JN et al.. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat Genet. 2012; 44(9):1015-1019.
  • [16]Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006; 2(12):e190.
  • [17]Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19(9):1655-1664.
  • [18]Gray K, Daugherty L, Gordon S, Seal R, Wright M, Bruford E. Genenames.org: The HGNC resources in. Nucleic Acids Res. 2013; 41(D1):D545-D552.
  • [19]Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al.. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014; 42(D1):D1001-D1006.
  • [20]Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M et al.. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-15550.
  • [21]Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006; 4(3):e72.
  • [22]Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D et al.. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009; 19(5):826-837.
  • [23]Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A et al.. Identifying recent adaptations in large-scale genomic data. Cell. 2013; 152(4):703-713.
  • [24]Kent W, Sugnet C, Furey T, Roskin K, Pringle T, Zahler A et al.. The human genome browser at UCSC. Genome Res. 2002; 12(6):996-1006.
  • [25]Cabili M, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al.. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011; 25(18):1915-1927.
  • [26]Dunham I, Kundaje A, Aldred S, Collins P, Davis C, Doyle F et al.. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489(7414):57-74.
  • [27]Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA, Poland GA. Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Hum Genet. 2012; 131(9):1403-1421.
  • [28]Heath S, Gut I, Brennan P, McKay J, Bencko V, Fabianova E et al.. Investigation of the fine structure of European populations with applications to disease association studies. Eur J Hum Genet. 2008; 16(12):1413-1429.
  • [29]Donnelly MP, Paschou P, Grigorenko E, Gurwitz D, Barta C, Lu RB et al.. A global view of the OCA2-HERC2 region and pigmentation. Hum Genet. 2012; 131(5):683-96.
  • [30]Lucotte G, Mercier G, Dieterlen F, Yuasa I. A Decreasing Gradient of 374 F Allele Frequencies in the Skin Pigmentation Gene SLC45A2, from the North of West Europe to North Africa. Biochem Genet. 2010; 48(1–2):26-33.
  • [31]Zhang Q, Zhao B, Li W, Oiso N, Novak E, Rusiniak M et al.. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat Gen. 2003; 33(2):145-153.
  • [32]Praetorius C, Grill C, Stacey SN, Metcalf AM, Gorkin DU, Robinson KC et al.. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013; 155(5):1022-1033.
  • [33]López S, García O, Yurrebaso I, Flores C, Acosta-Herrera M, Chen H et al.. The interplay between natural selection and susceptibility to melanoma on allele 374 F of SLC45A2 gene in a South European population. PLoS One. 2014; 9(8):e104367.
  • [34]Kamberov Y, Wang S, Tan J, Gerbault P, Wark A, Tan L et al.. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell. 2013; 152(4):691-702.
  • [35]Karlsson E, Harris J, Tabrizi S, Rahman A, Shlyakhter I, Patterson N et al.. Natural selection in a Bangladeshi population from the Cholera-Endemic Ganges River Delta. Sci Transl Med. 2013; 5(192):192ra86.
  • [36]Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admettla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. Plos Genet. 2011; 7(11):e1002355.
  • [37]Karlsson E, Kwiatkowski D, Sabeti P. Natural selection and infectious disease in human populations. Nat Rev Gen. 2014; 15(6):379-393.
  • [38]Cavalli-Sforza LL, Bodmer WF. The Genetics of Human populations. W. H. Freeman and Company, San Francisco; 1971.
  • [39]Majori G. Short history of malaria and its eradication in Italy with short notes on the fight against the infection in the mediterranean basin. Mediterr J Hematol Infect Dis. 2012; 4(1):e2012016.
  • [40]Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: The case of malaria. Curr Opin Immunol. 2014; 30C:39-47.
  • [41]Stoute J. Complement receptor 1 and malaria. Cell Microbiol. 2011; 13(10):1441-1450.
  • [42]Clatworthy M, Willcocks L, Urban B, Langhorne J, Williams T, Peshu N et al.. Systemic lupus erythematosus-associated defects in the inhibitory receptor Fc gamma RIIb reduce susceptibility to malaria. Proc Natl Acad Sci U S A. 2007; 104(17):7169-7174.
  • [43]Willcocks L, Carr E, Niederer H, Rayner T, Williams T, Yang W et al.. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2010; 107(17):7881-7885.
  • [44]Laayouni H, Oosting M, Luisi P, Ioana M, Alonso S, Ricano-Ponce I et al.. Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors. Proc Natl Acad Sci U S A. 2014; 111(7):2668-2673.
  • [45]Wong S, Gochhait S, Malhotra D, Pettersson F, Teo Y, Khor C et al.. Leprosy and the adaptation of human toll-like receptor 1. Plos Pathog. 2010; 6(7):e1000979.
  • [46]Everitt A, Clare S, Pertel T, John S, Wash R, Smith S et al.. IFITM3 restricts the morbidity and mortality associated with influenza. Nature. 2012; 484(7395):519-U146.
  • [47]Fumagalli M, Sironi M. Human genome variability, natural selection and infectious diseases. Curr Opin Immunol. 2014; 30C:9-16.
  • [48]Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med. 2014; 20(11):623-31.
  • [49]Heward JA, Lindsay MA. Long non-coding RNAs in the regulation of the immune response. Trends Immunol. 2014; 35(9):408-419.
  • [50]Jostins L, Ripke S, Weersma R, Duerr R, McGovern D, Hui K et al.. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012; 491(7422):119-124.
  • [51]Quintana-Murci L, Clark A. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol. 2013; 13(4):280-293.
  • [52]Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2013.
  • [53]Peden J, Hopewell J, Saleheen D, Chambers J, Hager J, Soranzo N et al.. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Gen. 2011; 43(4):339-U389.
  • [54]Altshuler D, Gibbs R, Peltonen L, Dermitzakis E, Schaffner S, Yu F et al.. Integrating common and rare genetic variation in diverse human populations. Nature. 2010; 467(7311):52-58.
  • [55]Li J, Absher D, Tang H, Southwick A, Casto A, Ramachandran S et al.. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008; 319(5866):1100-1104.
  • [56]Behar D, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J et al.. The genome-wide structure of the Jewish people. Nature. 2010; 466(7303):238-242.
  • [57]McEvoy B, Montgomery G, McRae A, Ripatti S, Perola M, Spector T et al.. Geographical structure and differential natural selection among North European populations. Genome Res. 2009; 19(5):804-814.
  • [58]Burton P, Clayton D, Cardon L, Craddock N, Deloukas P, Duncanson A et al.. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007; 447(7145):661-678.
  • [59]Zei G, Lisa A, Fiorani O, Magri C, Quintana-Murci L, Semino O et al.. From surnames to the history of Y chromosomes: The Sardinian population as a paradigm. Eur J Hum Genet. 2003; 11(10):802-807.
  • [60]Boattini A, Lisa A, Fiorani O, Zei G, Pettener D, Manni F. General Method to Unravel Ancient Population Structures through Surnames, Final Validation on Italian Data. Hum Biol. 2012; 84(3):235-270.
  • [61]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al.. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559-575.
  • [62]Deng L, Zhang Y, Kang J, Liu T, Zhao H, Gao Y et al.. An unusual haplotype structure on human chromosome 8p23 derived from the inversion polymorphism. Hum Mutat. 2008; 29(10):1209-1216.
  • [63]Tian C, Plenge RM, Ransom M, Lee A, Villoslada P, Selmi C et al.. Analysis and application of European genetic substructure using 300 K SNP information. PLoS Genet. 2008; 4(1):e4.
  • [64]Gautier M, Vitalis R. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics. 2012; 28(8):1176-1177.
  • [65]Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006; 78(4):629-644.
  • [66]Raychaudhuri S, Plenge R, Rossin E, Ng A, Purcell S, Sklar P et al.. Identifying relationships among genomic disease regions: Predicting genes at pathogenic snp associations and rare deletions. Plos Genet. 2009; 5(6):e1000534.
  • [67]Pruitt K, Tatusova T, Maglott D. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007; 35:D61-D65.
  • [68]Lee PH, O’Dushlaine C, Thomas B, Purcell SM. INRICH: Interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012; 28(13):1797-1799.
  文献评价指标  
  下载次数:30次 浏览次数:11次