期刊论文详细信息
BMC Complementary and Alternative Medicine
A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells
Thomas Efferth2  Sonia Jacinto1  Else Dapat2 
[1] Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines;German Cancer Research Center, Heidelberg, Germany
关键词: Annexin V-FITC;    JC-1 mitochondrial membrane potential;    Apoptosis;    Multi-drug resistance;    Cytotoxicity;    Aglaia loheri;   
Others  :  1220870
DOI  :  10.1186/1472-6882-13-286
 received in 2012-12-09, accepted in 2013-10-25,  发布年份 2013
PDF
【 摘 要 】

Background

Bioactivity-guided fractionation of extracts of Aglaia loheri Blanco (Meliaceae) yielded a cytotoxic isolate, termed Maldi 531.2[M + H]+. This phenolic ester was further investigated for its in vitro cytotoxicity toward human CCRF-CEM leukemia cells and their multi-drug resistant (MDR) subline, CEM/ADR5000. The intrinsic mitochondrial membrane potential (ΔΨm) and induction of apoptosis by this isolate were evaluated.

Methods

Chromatography techniques, mass spectrometry and proton NMR were employed to isolate Maldi 531.2[M + H]+. XTT cell proliferation and viability assay was used for cytotoxic test, and JC-1[5’,5’,6,6’,-tetrachloro-1,1’,3,3’-tetraethylbenzimidazoyl carbocyanine iodide was used to assess ΔΨm and initiation of apoptosis; Annexin V/FITC-PI staining was employed to analyse apoptosis.

Results

Maldi 531.2[M + H]+ was cytotoxic towards both CCRF-CEM and CEM/ADR5000 cells with IC50 values of 0.02 and 0.03 μM, respectively. The mitochondrial membrane potential (ΔΨm) of MDR cells was significantly reduced in a dose-dependent manner leading to apoptosis as detected by flow cytometric Annexin V-FITC/ PI staining.

Conclusion

Maldi 531.2[M + H]+ may be a potential anti-cancer drug candidate whose mode of action include reduction of the mitochondrial membrane potential and induction of apoptosis.

【 授权许可】

   
2013 Dapat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150725034019431.pdf 479KB PDF download
Figure 5. 29KB Image download
Figure 4. 48KB Image download
Figure 3. 45KB Image download
Figure 2. 50KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lucas DM, Still PC, Perez LB, Grever MR, Kinghorn AD: Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets 2010, 11:812-822.
  • [2]Reaman GH: Pediatric oncology: current views and outcomes. Pediatr Clin North Am 2002, 49:1305-1318.
  • [3]Pui CH, Relling MV, Pharm D, Downing JR: Mechanisms of disease: acute lymphoblastic leukemia. New Engl J Med 2004, 350:1535-1548.
  • [4]Kawamata N, Ogawa S, Zimmermann M, Kato M, Sanada M, Hemminki K, Yamatomo G, Nannya Y, Koehler R, Flohr T, Miller CW, Harbott J, Ludwig WD, Stanulla M, Schrappe M, Bartram CR, Koeffler HP: Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 2008, 111:776-784.
  • [5]Bungaro S, Dell'Orto MC, Zangrando A, Basso D, Gorletta T, Lo Nigro L, Leszl A, Young BD, Basso G, Bicciato S, Biondi A, TeKronnie G, Cazzaniga G: Integration of genomic and gene expression data of childhood ALL without known aberrations identifies subgroups with specific genetic hallmarks. Genes Chromosomes Cancer 2009, 48:22-38.
  • [6]Parker H, Wright SL, Stewart AR, Bailey S, Bown NP, Hall AG, Harrison CJ: A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 2009, 113:100-107.
  • [7]Shacter E, Williams JA, Hinson RM, Sentürker S, Lee Y: Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 2000, 96:307-313.
  • [8]Efferth T: Personalized Cancer Medicine: From molecular diagnostics to targeted therapy with natural products. Planta Med 2010, 76:1143-1154.
  • [9]Lipipun V, Kurokawa M, Suttisri R, Taweechotipatr P, Pramyothin P, Hattori M, Shiraki K: Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res 2003, 60:175-180.
  • [10]Tasanor O, Brem B, Leitsch D, Binder M, Duchene M, Greger H, Wernsdorfer W: Development of a pharmacodynamic screening model with Entamoeba histolytica. Wien Klin Wochenschr 2007, 119:88-95.
  • [11]Proksch P, Edrada R, Ebel R, Bohnenstengel FI, Nugroho BW: Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr Org Chem 2001, 5:923-938.
  • [12]Esimone CO, Eck G, Nworu CS, Hoffmann D, Uberla K, Proksch P: Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro. Phytomedicine 2010, 17:540-547.
  • [13]Inad A: Cancer chemopreventive activity of odorine and odorinol from Aglaia odorata. Biol Pharm Bull 2001, 24:1282-1285.
  • [14]Greger H, Hofer M, Teichmann K, Schinnerl J, Pannel CM, Vajrodaya S, Hofer O: Amide-esters from Aglaiatenuicaulis – First representatives of a class of compounds structurally related to bisamides and flavaglines. Phytochemistry 2007, 69:928-938.
  • [15]Khewkhom N, Greger H, Sangchote S: Antifungal activity of flavaglines from Aglaia species. Agric Sci J 2006, 37(5 (Suppl.)):66-71.
  • [16]Greger H, Pacher T, Brem B, Bacher M, Hofer O: Insecticidal flavaglines and other compounds from Fijian Aglaia species. Phytochemistry 2001, 57:57-64.
  • [17]Joycharat N, Greger H, Hofer O, Saifah E: Flavaglines and triterpenoids from the leaves of Aglaia forbesii. Phytochemistry 2008, 69:206-211.
  • [18]Bohnenstengel FI, Steube KG, Meyer C, Nugroho BW, Hung PD, Kiet LC, Proksch P: Structure activity relationships of antiproliferative rocaglamide derivatives from Aglaia species (Meliaceae). Z Naturforsch C 1999, 54:55-60.
  • [19]Kim S, Chin YW, Su BN, Riswan S, Kardono LBS, Afriastini JJ, Chai H, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD: Cytotoxic flavaglines and bisamides from Aglaia edulis. J Nat Prod 2006, 69:1769-1775.
  • [20]Salim AA, Chai H, Rachman I, Riswan S, Kardono LBS, Farnsworth N, Carcache-Blanco E, Kinghorn D: Constituents of leaves and stem bark of Aglaia foveolata. Tetrahedron 2007, 63:7926-7934.
  • [21]Lucas DM, Edwards RB, Lozanski G, West DA, Shin JD, Vargo MA, Davis ME, Rozewski DM, Johnson AJ, Su BN, Goettl VM, Heerema NA, Lin TS, Lehman A, Zhang X, Jarioura D, Newman DJ, Byrd JC, Kinghorn AD, Grever MR: The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood 2009, 113:4656-4666.
  • [22]Diaz G, Setzu MD, Zucca A, Isola R, Diana A, Murru R, Sogos V, Gremo F: Subcellular heterogeneity of mitochondrial membrane potential: relationship with organelle distribution and intercellular contacts in normal hypoxic and apoptotic cells. J Cell Sci 1999, 112:1077-1084.
  • [23]Acton B, Jurisicova A, Jurisica I, Casper R: Alterations in mitochondrial membrane potential during pre-implantation stages of mouse and human embryo. Mol Hum Reprod 2004, 10:23-32.
  • [24]Kimmig A, Gekeler V, Neumann M, Frese G, Handgretinger R, Kardos G, Diddens H, Niethammer D: Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res 1990, 50:6793-6799.
  • [25]Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch ME, Volm M, Tew KD, Ross DD, Funk JO: Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol 2003, 64:382-394.
  • [26]Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, Remacle J: Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res 2004, 64:8987-8993.
  • [27]Katial RK, Sachanandani D, Pinney C, Lieberman MM: Cytokine production in cell culture by peripheral blood mononuclear cells from immunocompetent hosts. Clin Diagn Lab Immunol 1998, 5(1):78.
  • [28]Mossman T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983, 65:55-63.
  • [29]Joshi SC, Verma AR, Mathela CS: Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. Food Chem Toxicol 2010, 48:37-40.
  • [30]Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML: Alterations in mitochondrial structure and function are early event of desamethasone-induced thymocyte apoptosis. J Cell Biol 1995, 130:157-167.
  • [31]Zhang G, Gurtu V, Kain SR, Yan G: Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 1997, 23:525-531.
  • [32]Efferth T, Konkimalla VB, Wang YF, Sauerbrey A, Furchtbar S, Zintl F, Mattern J, Volm M: Prediction of broad spectrum resistance of tumors towards anticancer drugs. Clin Cancer Res 2008, 14:2405-2412.
  • [33]Vu H, Pham NB, Quinn RJ: Direct screening of natural product extracts using mass spectrometry. J Biomol Screen 2008, 13(4):265-275.
  • [34]Muellner AN, Samuel R, Chase MW, Pannell CM, Greger H: Aglaia (Meliaceae): an evaluation of taxonomic concepts based on DNA data and secondary metabolites. Am J Botany 2005, 92:534-543.
  • [35]Croituro R, Van den Broek LAM, Frissen AE, Davidescu CM, Peter P, Bueriu CG: Lipase catalyzed synthesis aromatase esters of sugar alcohols. World Acad Sci Eng Technol 2011, 76:484-489.
  • [36]Lee YT, Don MJ, Hung PS, Shen YC, Lo YS, Chang CF, Ho LK: Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells. Cancer Lett 2005, 223:19-25.
  • [37]Machado NFL, Calheiros R, Gaspar A, Garrido J, Borges F, Marques MPM: Antioxidant phenolic esters with potential anticancer activity: solution equilibria studied by raman spectroscopy. J Raman Spectrosc 2008. doi:10.1002/jrs.2083
  • [38]Fiuza SM, Gomes C, Teixeira LJ, da Cruz MT G, Cordeiro MNDS, Milhazes N, Borges F, Marques MPM: Phenolic acid derivatives with potential anticancer properties – a structure-activity relationship study. Part 1: methyl, propyl and octyl esters of caffeic and gallic acids. Biorg Med Chem 2004, 12:3581-3589.
  • [39]Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35:495-516.
  • [40]Fulda S: Modulation of apoptosis. Planta Med 2010, 76:1075-1079.
  • [41]Liberles SD, Schreiber SL: Apoptosis-inducing natural products found in utero during murine pregnancy. Chem Biol 2000, 7:365-372.
  • [42]Tait SWG, Green DR: Mitochondria and cell death: outer membrane permeabilization and beyond. Mol Cell Biol 2010, 11:621-632.
  • [43]Heerdt BG, Houston MA, Augenlicht LH: The intrinsic mitochondrial membrane potential of colonic carcinoma cells is lined to the probability of tumor progression. Cancer Res 2005, 65:9861-9867.
  • [44]Heerdt BG, Houston MA, Anthony GM, Augenlicht LH: Initiation of growth arrest and apoptosis of MCF-7 mammary carcinoma cells by tributyrin, a triglyceride analogue of the short-chain fatty acid butyrate, is associated with mitochondrial activity. Cancer Res 1999, 59:1584-1591.
  • [45]Ly JD, Grubb DR, Lawen A: The mitochondrial membrane potential (ΔΨm) in apoptosis; an update. Apoptosis 2003, 8(2):115-128.
  • [46]Ford JM, Hait WN: Pharmacologic circumvention of multidrug resistance. Cytotechnol 1993, 12:171-212.
  • [47]Eichhorn T, Efferth T: P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. J Ethnopharmacol 2012, 141:557-570.
  • [48]Tiwari AK, Sodani K, Dai CL, Ashby CR Jr, Chen ZS: Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 2011, 12:570-594.
  文献评价指标  
  下载次数:62次 浏览次数:14次