期刊论文详细信息
BMC Microbiology
Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth
Hiroyuki Yamaguchi3  Yoshimasa Yamamoto1  Junji Matsuo3  Kasumi Ishida2 
[1] Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan;Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan;Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
关键词: Chlamydial outer protein N;    Effectors;    Type III secretion;    Chlamydia pneumoniae;   
Others  :  1090374
DOI  :  10.1186/s12866-014-0330-3
 received in 2014-08-26, accepted in 2014-12-16,  发布年份 2014
PDF
【 摘 要 】

Background

Pathogenic chlamydiae are obligate intracellular pathogens and have adapted successfully to human cells, causing sexually transmitted diseases or pneumonia. Chlamydial outer protein N (CopN) is likely a critical effector protein secreted by the type III secretion system in chlamydiae, which manipulates host cells. However, the mechanisms of its action remain to be clarified. In this work, we aimed to identify previously unidentified CopN effector target in host cells.

Results

We first performed a pull-down assay with recombinant glutathione S-transferase (GST) fusion CopN proteins (GST–CpCopN: Chlamydia pneumoniae TW183, GST–CtCopN: Chlamydia trachomatis D/UW-3/CX) as “bait” and soluble lysates obtained from human immortal epithelial HEp-2 cells as “prey”, followed by SDS-PAGE with mass spectroscopy (MS). We found that a host cell protein specifically bound to GST–CpCopN, but not GST–CtCopN. MS revealed the host protein to be fructose bisphosphate aldolase A (aldolase A), which plays a key role in glycolytic metabolism. We also confirmed the role of aldolase A in chlamydia-infected HEp-2 cells by using two distinct experiments for gene knockdown with an siRNA specific to aldolase A transcripts, and for assessment of glycolytic enzyme gene expression levels. As a result, both the numbers of chlamydial inclusion-forming units and RpoD transcripts were increased in the chlamydia-infected aldolase A knockdown cells, as compared with the wild-type HEp-2 cells. Meanwhile, chlamydial infection tended to enhance expression of aldolase A.

Conclusions

We discovered that one of the C. pneumoniae CopN targets is the glycolytic enzyme aldolase A. Sequestering aldolase A may be beneficial to bacterial growth in infected host cells.

【 授权许可】

   
2014 Ishida et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128160516929.pdf 2129KB PDF download
Figure 5. 48KB Image download
Figure 4. 49KB Image download
Figure 3. 89KB Image download
Figure 2. 136KB Image download
Figure 1. 104KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Blasi F, Tarsia P, Aliberti S: Chlamydophila pneumoniae. Clin Microbiol Infect 2009, 15(1):29-35.
  • [2]Belland RJ, Ouellette SP, Gieffers J, Byrne GI: Chlamydia pneumoniae and atherosclerosis. Cell Microbiol 2001, 6(2):117-127.
  • [3]Gottlieb SL, Berman SM, Low N: Screening and treatment to prevent sequelae in women with Chlamydia trachomatis genital infection: how much do we know? J Infect Dis 2010, 201(Suppl 2):S156-S167.
  • [4]Malik A, Jain S, Rizvi M, Shukla I, Hakim S: Chlamydia trachomatis infection in women with secondary infertility. Fertil Steril 2009, 91(1):91-95.
  • [5]Hahn DL, Schure A, Patel K, Childs T, Drizik E, Webley W: Chlamydia pneumoniae-specific IgE is prevalent in asthma and is associated with disease severity. PLoS One 2012, 7(4):e35945.
  • [6]Abdelrahman YM, Belland RJ: The chlamydial developmental cycle. FEMS Microbiol Rev 2005, 29(5):949-959.
  • [7]Abromaitis S, Stephens RS: Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog 2009, 5(4):e1000357.
  • [8]Hybiske K, Stephens RS: Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A 2007, 104(27):11430-11435.
  • [9]Betts-Hampikian HJ, Fields KA: The chlamydial type III secretion mechanism: revealing cracks in a tough Nut. Front Microbiol 2010, 1:114.
  • [10]Carayol N, Tran Van Nhieu G: Tips and tricks about Shigella invasion of epithelial cells. Curr Opin Microbiol 2013, 16(1):32-37.
  • [11]van der Heijden J, Finlay BB: Type III effector-mediated processes in Salmonella infection. Future Microbiol 2012, 7(6):685-703.
  • [12]Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T: A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A 2004, 101(27):10166-10171.
  • [13]Subtil A, Parsot C, Dautry-Varsat A: Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol Microbiol 2001, 39(3):792-800.
  • [14]Fields KA, Hackstadt T: Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 2000, 38(5):1048-1060.
  • [15]Enninga J, Rosenshine I: Imaging the assembly, structure and activity of type III secretion systems. Cell Microbiol 2009, 11(10):1462-1470.
  • [16]Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A: MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 2009, 71(2):449-460.
  • [17]Martinez-Argudo I, Blocker AJ: The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 2010, 78(6):1365-1378.
  • [18]Plano GV, Schesser K: The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2013, 57(1–3):237-245.
  • [19]Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I: The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 1998, 62(4):1315-1352.
  • [20]Ferracci F, Schubot FD, Waugh DS, Plano GV: Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 2005, 57(4):970-987.
  • [21]Herrmann M, Schuhmacher A, Mühldorfer I, Melchers K, Prothmann C, Dammeier S: Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res Microbiol 2006, 157(6):513-524.
  • [22]Ho TD, Starnbach MN: The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Infect Immun 2005, 73(2):905-911.
  • [23]Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, Ohi R, Spiller BW: The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J Biol Chem 2011, 286(39):33992-33998.
  • [24]Huang J, Lesser CF, Lory S: The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 2008, 456(7218):112-115.
  • [25]Ishida K, Kubo T, Saeki A, Yamane C, Matsuo J, Yimin , Nakamura S, Hayashi Y, Kunichika M, Yoshida M, Takahashi K, Hirai I, Yamamoto Y, Shibata K, Yamaguchi H: Chlamydophila pneumoniae in human immortal Jurkat cells and primary lymphocytes uncontrolled by interferon-γ. Microbes Infect 2013, 15(3):192-200.
  • [26]Yamazaki T, Matsuo J, Nakamura S, Oguri S, Yamaguchi H: Effect of Ureaplasma parvum co-incubation on Chlamydia trachomatis maturation in human epithelial HeLa cells treated with interferon-γ. J Infect Chemother 2014, 20(8):460-464.
  • [27]Kobayashi M, Ishida K, Matsuo J, Nakamura S, Nagasawa A, Motohashi K, Yao T, Hirai I, Yamamoto Y, Suzuki H, Shimizu C, Matsuno K, Yamaguchi H: Chlamydophila pneumoniae attachment and infection in low proteoglycan expressing human lymphoid Jurkat cells. Microb Pathog 2011, 51(3):209-216.
  • [28]Gnoatto N, Lotufo RF, Matsuda M, Penna V, Marquezini MV: Expression of cell-surface heparan sulfate proteoglycans in human cyclosporin-induced gingival overgrowth. J Periodontal Res 2007, 42(6):553-558.
  • [29]Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G: Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 2001, 3:19-25.
  • [30]Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, Tokuhisa Y, Sakamoto K, Takashima M, Tamesa T, Oka M: Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol 2008, 33(4):725-731.
  • [31]Kim SH, Kim KH, Yoo BC, Ku JL: Induction of LGR5 by H2O2 treatment is associated with cell proliferation via the JNK signaling pathway in colon cancer cells. Int J Oncol 2012, 41(5):1744-1750.
  • [32]Everett KD, Bush RM, Andersen AA: Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 1999, Pt 2:415-440.
  • [33]Nawrotek A, Guimarães BG, Velours C, Subtil A, Knossow M, Gigant B: Biochemical and Structural Insights into Microtubule Perturbation by CopN from Chlamydia pneumoniae. J Biol Chem 2014, pii:jbc.M114.568436.
  • [34]Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH: Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 2011, 82(5):1185-1203.
  • [35]Wang J, Morris AJ, Tolan DR, Pagliaro L: The molecular nature of the F-actin binding activity of aldolase revealed with site-directed mutants. J Biol Chem 1996, 271(12):6861-6865.
  • [36]O'Reilly G, Clarke F: Identification of an actin binding region in aldolase. FEBS Lett 1993, 321(1):69-72.
  • [37]Merkulova M, Hurtado-Lorenzo A, Hosokawa H, Zhuang Z, Brown D, Ausiello DA, Marshansky V: Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol Cell Physiol 2011, 300(6):C1442-C1455.
  • [38]Du S, Guan Z, Hao L, Song Y, Wang L, Gong L, Liu L, Qi X, Hou Z, Shao S: Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One 2014, 9(1):e85804.
  • [39]Ritterson Lew C, Tolan DR: Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics. J Cell Biochem 2013, 114(8):1928-1939.
  • [40]Buscaglia CA, Penesetti D, Tao M, Nussenzweig V: Characterization of an aldolase-binding site in the Wiskott-Aldrich syndrome protein. J Biol Chem 2006, 281(3):1324-1331.
  • [41]Pollard TD: The cytoskeleton, cellular motility and the reductionist agenda. Nature 2003, 422(6933):741-745.
  • [42]Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M: The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 2007, 282(50):36321-36329.
  • [43]Chambers MC, Song KH, Schneider DS: Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS One 2012, 7(12):e50679.
  文献评价指标  
  下载次数:8次 浏览次数:9次