期刊论文详细信息
BMC Microbiology
Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system
Luís Jaime Mota2  João Paulo Gomes3  Maria José Borrego3  Rui Maurício4  Vítor Borges3  Sara V Pais2  Filipe Almeida2  Catarina Milho1  Maria da Cunha2 
[1] Present address: Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal;Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal;Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal;Present address: Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, United Kingdom
关键词: Effectors;    Type III secretion;    Yersinia;    Chlamydia;    Bacterial pathogenesis;   
Others  :  1141906
DOI  :  10.1186/1471-2180-14-40
 received in 2013-10-06, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Chlamydia trachomatis is an obligate intracellular human pathogen causing ocular and urogenital infections that are a significant clinical and public health concern. This bacterium uses a type III secretion (T3S) system to manipulate host cells, through the delivery of effector proteins into their cytosol, membranes, and nucleus. In this work, we aimed to find previously unidentified C. trachomatis T3S substrates.

Results

We first analyzed the genome of C. trachomatis L2/434 strain for genes encoding mostly uncharacterized proteins that did not appear to possess a signal of the general secretory pathway and which had not been previously experimentally shown to be T3S substrates. We selected several genes with these characteristics and analyzed T3S of the encoding proteins using Yersinia enterocolitica as a heterologous system. We identified 23 C. trachomatis proteins whose first 20 amino acids were sufficient to drive T3S of the mature form of β-lactamase TEM-1 by Y. enterocolitica. We found that 10 of these 23 proteins were also type III secreted in their full-length versions by Y. enterocolitica, providing additional support that they are T3S substrates. Seven of these 10 likely T3S substrates of C. trachomatis were delivered by Y. enterocolitica into host cells, further suggesting that they could be effectors. Finally, real-time quantitative PCR analysis of expression of genes encoding the 10 likely T3S substrates of C. trachomatis showed that 9 of them were clearly expressed during infection of host cells.

Conclusions

Using Y. enterocolitica as a heterologous system, we identified 10 likely T3S substrates of C. trachomatis (CT053, CT105, CT142, CT143, CT144, CT161, CT338, CT429, CT656, and CT849) and could detect translocation into host cells of CT053, CT105, CT142, CT143, CT161, CT338, and CT429. Therefore, we revealed several C. trachomatis proteins that could be effectors subverting host cell processes.

【 授权许可】

   
2014 da Cunha et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327172049380.pdf 2322KB PDF download
Figure 5. 94KB Image download
Figure 4. 83KB Image download
Figure 3. 113KB Image download
Figure 2. 137KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Wright HR, Turner A, Taylor HR: Trachoma. Lancet 2008, 371(9628):1945-1954.
  • [2]Bebear C, de Barbeyrac B: Genital Chlamydia trachomatis infections. Clin Microbiol Infect 2009, 15(1):4-10.
  • [3]Abdelrahman YM, Belland RJ: The chlamydial developmental cycle. FEMS Microbiol Rev 2005, 29(5):949-959.
  • [4]Betts HJ, Wolf K, Fields KA: Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Curr Opin Microbiol 2009, 12(1):81-87.
  • [5]Valdivia RH: Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 2008, 11(1):53-59.
  • [6]Jewett TJ, Miller NJ, Dooley CA, Hackstadt T: The conserved Tarp actin binding domain is important for chlamydial invasion. PLoS Pathog 2010, 6(7):e1000997.
  • [7]Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA: Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 2008, 4(3):e1000014.
  • [8]Lutter EI, Barger AC, Nair V, Hackstadt T: Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms. Cell Rep 2013, 3(6):1921-1931.
  • [9]Scidmore MA, Hackstadt T: Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol Microbiol 2001, 39(6):1638-1650.
  • [10]Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S, Dautry-Varsat A, Subtil A: SNARE protein mimicry by an intracellular bacterium. PLoS Pathog 2008, 4(3):e1000022.
  • [11]Rzomp KA, Moorhead AR, Scidmore MA: The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect Immun 2006, 74(9):5362-5373.
  • [12]Mital J, Miller NJ, Fischer ER, Hackstadt T: Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell Microbiol 2010, 12(9):1235-1249.
  • [13]Chellas-Gery B, Linton CN, Fields KA: Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Cell Microbiol 2007, 9(10):2417-2430.
  • [14]Hower S, Wolf K, Fields KA: Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol 2009, 72(6):1423-1437.
  • [15]Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A: Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 2010, 6(7):e1000995.
  • [16]Derre I, Swiss R, Agaisse H: The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 2011, 7(6):e1002092.
  • [17]Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN: Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 2011, 7(9):e1002258.
  • [18]Gerard HC, Mishra MK, Mao G, Wang S, Hali M, Whittum-Hudson JA, Kannan RM, Hudson AP: Dendrimer-enabled DNA delivery and transformation of Chlamydia pneumoniae. Nanomedicine 2013, 9(7):996-1008.
  • [19]Sisko JL, Spaeth K, Kumar Y, Valdivia RH: Multifunctional analysis of Chlamydia-specific genes in a yeast expression system. Mol Microbiol 2006, 60(1):51-66.
  • [20]Ho TD, Starnbach MN: The Salmonella enterica serovar Typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Infect Immun 2005, 73(2):905-911.
  • [21]Subtil A, Delevoye C, Balana ME, Tastevin L, Perrinet S, Dautry-Varsat A: A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 2005, 56(6):1636-1647.
  • [22]Muschiol S, Boncompain G, Vromman F, Dehoux P, Normark S, Henriques-Normark B, Subtil A: Identification of a family of effectors secreted by the type III secretion system that are conserved in pathogenic Chlamydiae. Infect Immun 2011, 79(2):571-580.
  • [23]Furtado AR, Essid M, Perrinet S, Balana ME, Yoder N, Dehoux P, Subtil A: The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52. Cell Microbiol 2013, 15(12):2064-2079.
  • [24]Fields KA, Hackstadt T: Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 2000, 38(5):1048-1060.
  • [25]Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T: A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A 2004, 101(27):10166-10171.
  • [26]Pais SV, Milho C, Almeida F, Mota LJ: Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. PLoS ONE 2013, 8(2):e56292.
  • [27]Hovis KM, Mojica S, McDermott JE, Pedersen L, Simhi C, Rank RG, Myers GS, Ravel J, Hsia RC, Bavoil PM: Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog Dis 2013, 69(3):213-222.
  • [28]Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T: Sequence-based prediction of type III secreted proteins. PLoS Pathog 2009, 5(4):e1000376.
  • [29]Samudrala R, Heffron F, McDermott JE: Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 2009, 5(4):e1000375.
  • [30]Lower M, Schneider G: Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 2009, 4(6):e5917.
  • [31]Fling SP, Sutherland RA, Steele LN, Hess B, D’Orazio SE, Maisonneuve J, Lampe MF, Probst P, Starnbach MN: CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc Natl Acad Sci U S A 2001, 98(3):1160-1165.
  • [32]Hobolt-Pedersen AS, Christiansen G, Timmerman E, Gevaert K, Birkelund S: Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. FEMS Immunol Med Microbiol 2009, 57(1):46-58.
  • [33]Kumar Y, Cocchiaro J, Valdivia RH: The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 2006, 16(16):1646-1651.
  • [34]Li Z, Chen C, Chen D, Wu Y, Zhong Y, Zhong G: Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect Immun 2008, 76(6):2746-2757.
  • [35]Lei L, Qi M, Budrys N, Schenken R, Zhong G: Localization of Chlamydia trachomatis hypothetical protein CT311 in host cell cytoplasm. Microb Pathog 2011, 51(3):101-109.
  • [36]Gong S, Lei L, Chang X, Belland R, Zhong G: Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. Microbiology 2011, 157(Pt 4):1134-1144.
  • [37]Qi M, Lei L, Gong S, Liu Q, DeLisa MP, Zhong G: Chlamydia trachomatis secretion of an immunodominant hypothetical protein (CT795) into host cell cytoplasm. J Bacteriol 2011, 193(10):2498-2509.
  • [38]Lu C, Lei L, Peng B, Tang L, Ding H, Gong S, Li Z, Wu Y, Zhong G: Chlamydia trachomatis GlgA Is Secreted into Host Cell Cytoplasm. PLoS ONE 2013, 8(7):e68764.
  • [39]Li Z, Chen D, Zhong Y, Wang S, Zhong G: The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun 2008, 76(8):3415-3428.
  • [40]Lei L, Dong X, Li Z, Zhong G: Identification of a novel nuclear localization signal sequence in Chlamydia trachomatis-secreted hypothetical protein CT311. PLoS ONE 2013, 8(5):e64529.
  • [41]Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN: Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 2006, 61(1):142-150.
  • [42]Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC: ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell Microbiol 2008, 10(9):1879-1892.
  • [43]Scidmore MA: Cultivation and laboratory maintenance of Chlamydia trachomatis. Curr Protoc Microbiol 2005. 00:11A.1.1–11A.1.25
  • [44]Iriarte M, Cornelis GR: YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol Microbiol 1998, 29(3):915-929.
  • [45]Almeida F, Borges V, Ferreira R, Borrego MJ, Gomes JP, Mota LJ: Polymorphisms in Inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates. J Bacteriol 2012, 194(23):6574-6585.
  • [46]Sorg I, Wagner S, Amstutz M, Muller SA, Broz P, Lussi Y, Engel A, Cornelis GR: YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 2007, 26(12):3015-3024.
  • [47]Charpentier X, Oswald E: Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 2004, 186(16):5486-5495.
  • [48]Marenne MN, Journet L, Mota LJ, Cornelis GR: Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, YscF and YopN. Microb Pathog 2003, 35(6):243-258.
  • [49]Denecker G, Totemeyer S, Mota LJ, Troisfontaines P, Lambermont I, Youta C, Stainier I, Ackermann M, Cornelis GR: Effect of low- and high-virulence Yersinia enterocolitica strains on the inflammatory response of human umbilical vein endothelial cells. Infect Immun 2002, 70(7):3510-3520.
  • [50]Grosdent N, Maridonneau-Parini I, Sory MP, Cornelis GR: Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun 2002, 70:4165-4176.
  • [51]Letzelter M, Sorg I, Mota LJ, Meyer S, Stalder J, Feldman M, Kuhn M, Callebaut I, Cornelis GR: The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J 2006, 25(13):3223-3233.
  • [52]Borges V, Ferreira R, Nunes A, Nogueira P, Borrego MJ, Gomes JP: Normalization strategies for real-time expression data in Chlamydia trachomatis. J Microbiol Methods 2010, 82(3):256-264.
  • [53]Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, et al.: Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998, 282(5389):754-759.
  • [54]Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertzcak H, et al.: Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 2008, 18(1):161-171.
  • [55]Bao X, Nickels BE, Fan H: Chlamydia trachomatis protein GrgA activates transcription by contacting the nonconserved region of sigma66. Proc Natl Acad Sci U S A 2012, 109(42):16870-16875.
  • [56]Wang Y, Sun M, Bao H, White AP: T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS ONE 2013, 8(3):e58173.
  • [57]Sory MP, Boland A, Lambermont I, Cornelis GR: Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci U S A 1995, 92(26):11998-12002.
  • [58]Lloyd SA, Norman M, Rosqvist R, Wolf-Watz H: Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 2001, 39(2):520-531.
  • [59]Feldman MF, Muller S, Wuest E, Cornelis GR: SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system. Mol Microbiol 2002, 46(4):1183-1197.
  • [60]Lee VT, Schneewind O: Yop fusions to tightly folded protein domains and their effects on Yersinia enterocolitica type III secretion. J Bacteriol 2002, 184(13):3740-3745.
  • [61]Akeda Y, Galan JE: Chaperone release and unfolding of substrates in type III secretion. Nature 2005, 437(7060):911-915.
  • [62]Sorg JA, Miller NC, Marketon MM, Schneewind O: Rejection of impassable substrates by Yersinia type III secretion machines. J Bacteriol 2005, 187(20):7090-7102.
  • [63]Cornelis GR: The type III secretion injectisome. Nat Rev Microbiol 2006, 4(11):811-825.
  • [64]Stebbins CE, Galan JE: Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 2001, 414(6859):77-81.
  • [65]Song L, Carlson JH, Whitmire WM, Kari L, Virtaneva K, Sturdevant DE, Watkins H, Zhou B, Sturdevant GL, Porcella SF, et al.: Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 2013, 81(3):636-644.
  • [66]Rockey DD: Unraveling the basic biology and clinical significance of the chlamydial plasmid. J Exp Med 2011, 208(11):2159-2162.
  • [67]Kari L, Whitmire WM, Olivares-Zavaleta N, Goheen MM, Taylor LD, Carlson JH, Sturdevant GL, Lu C, Bakios LE, Randall LB, et al.: A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J Exp Med 2011, 208(11):2217-2223.
  • [68]Olivares-Zavaleta N, Whitmire W, Gardner D, Caldwell HD: Immunization with the attenuated plasmidless Chlamydia trachomatis L2(25667R) strain provides partial protection in a murine model of female genitourinary tract infection. Vaccine 2010, 28(6):1454-1462.
  • [69]Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT, Marsh P, Skilton RJ, Holland MJ, Mabey D, Peeling RW, et al.: Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 2012, 44(4):413-419. S411
  • [70]Spaeth KE, Chen YS, Valdivia RH: The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog 2009, 5(9):e1000579.
  • [71]Ponting CP: Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol 1999, 9(24):R911-R913.
  • [72]Taylor LD, Nelson DE, Dorward DW, Whitmire WM, Caldwell HD: Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect Immun 2010, 78(6):2691-2699.
  • [73]Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson KE, Wolf-Watz H: Modulation of virulence factor expression by pathogen target cell contact. Science 1996, 273(5279):1231-1233.
  • [74]Parsot C, Ageron E, Penno C, Mavris M, Jamoussi K, d’Hauteville H, Sansonetti P, Demers B: A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol Microbiol 2005, 56(6):1627-1635.
  • [75]Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A: MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 2009, 71(2):449-460.
  • [76]Feldman MF, Cornelis GR: The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol Lett 2003, 219(2):151-158.
  • [77]Parsot C, Hamiaux C, Page AL: The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 2003, 6(1):7-14.
  • [78]Agaisse H, Derre I: A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS ONE 2013, 8(2):e57090.
  文献评价指标  
  下载次数:23次 浏览次数:9次