期刊论文详细信息
BMC Microbiology
Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick
Adrian A Vojnov1  Atilio P Castagnaro2  Alexandre Morais do Amaral5  Maria R Marano3  Maria P Filippone2  Ingrid G Orce2  Florencia Malamud6  Luciano A Rigano4 
[1] Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina;Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- CONICET, Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Las Talitas, Tucumán, Argentina;Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina;Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand;Embrapa, Brasília, Distrito Federal, Brasil;Instituto de investigaciones fisiológicas y ecológicas vinculadas a la Agricultura (IFEVA-FAUBA), Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
关键词: Diaphorina citri;    Candidatus Liberibacter asiaticus;    Huanglongbing;   
Others  :  1141447
DOI  :  10.1186/1471-2180-14-86
 received in 2013-09-20, accepted in 2014-03-26,  发布年份 2014
PDF
【 摘 要 】

Background

Citrus Huanglongbing (HLB) is the most devastating bacterial citrus disease worldwide. Three Candidatus Liberibacter species are associated with different forms of the disease: Candidatus Liberibacter asiaticus, Candidatus Liberibacter americanus and Candidatus Liberibacter africanus. Amongst them, Candidatus Liberibacter asiaticus is the most widespread and economically important. These Gram-negative bacterial plant pathogens are phloem-limited and vectored by citrus psyllids. The current management strategy of HLB is based on early and accurate detection of Candidatus Liberibacter asiaticus in both citrus plants and vector insects. Nowadays, real time PCR is the method of choice for this task, mainly because of its sensitivity and reliability. However, this methodology has several drawbacks, namely high equipment costs, the need for highly trained personnel, the time required to conduct the whole process, and the difficulty in carrying out the detection reactions in field conditions.

Results

A recent DNA amplification technique known as Loop Mediated Isothermal Amplification (LAMP) was adapted for the detection of Candidatus Liberibacter asiaticus. This methodology was combined with a Lateral Flow Dipstick (LFD) device for visual detection of the resulting amplicons, eliminating the need for gel electrophoresis. The assay was highly specific for the targeted bacterium. No cross-reaction was observed with DNA from any of the other phytopathogenic bacteria or fungi assayed. By serially diluting purified DNA from an infected plant, the sensitivity of the assay was found to be 10 picograms. This sensitivity level was proven to be similar to the values obtained running a real time PCR in parallel. This methodology was able to detect Candidatus Liberibacter asiaticus from different kinds of samples including infected citrus plants and psyllids.

Conclusions

Our results indicate that the methodology here reported constitutes a step forward in the development of new tools for the management, control and eradication of this destructive citrus disease. This system constitutes a potentially field-capable approach for the detection of the most relevant HLB-associated bacteria in plant material and psyllid vectors.

【 授权许可】

   
2014 Rigano et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327051059279.pdf 1063KB PDF download
Figure 4. 65KB Image download
Figure 3. 35KB Image download
Figure 2. 30KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Gottwald TR: Current epidemiological understanding of citrus Huanglongbing. Annu Rev Phytopathol 2010, 48:119-139.
  • [2]Wang N, Trivedi P: Citrus huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology 2013, 103(7):652-665.
  • [3]Li W, Hartung JS, Levy L: Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J Microbiol Methods 2006, 66(1):104-115.
  • [4]Morgan JK, Zhou L, Li W, Shatters RG, Keremane M, Duan YP: Improved real-time PCR detection of ‘Candidatus Liberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes. Mol Cell Probes 2012, 26(2):90-98.
  • [5]Do Carmo Teixeira D, Luc Danet J, Eveillard S, Cristina Martins E, De Jesus Junior WC, Takao Yamamoto P, Aparecido Lopes S, Beozzo Bassanezi R, Juliano Ayres A, Saillard C, Bove JM: Citrus huanglongbing in Sao Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Mol Cell Probes 2005, 19(3):173-179.
  • [6]Grafton-Cardwell EE, Stelinski LL, Stansly PA: Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu Rev Entomol 2013, 58:413-432.
  • [7]Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF: Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 2008, 98(4):387-396.
  • [8]Garnier M, Martin-Gros G, Bove JM: Monoclonal antibodies against the bacterial-like organism associated with citrus greening disease. Ann Inst Pasteur Microbiol 1987, 138(6):639-650.
  • [9]JM B: Huanglongbing: a destructive, newly emerging, century-old disease of citrus. J Plant Pathol 2006, 88:7-37.
  • [10]Hocquellet A, Bove JM, Garnier M: Production and evaluation of non-radioactive probes for the detection of the two ‘Candidatus Liberobacter’ species associated with citrus huanglongbing (greening). Mol Cell Probes 1997, 11(6):433-438.
  • [11]Okuda MMM, Tanaka Y: Characterization of the tufB-secE-nusG-rplKAJL-rpoB Gene Cluster of the Citrus Greening Organism and Detection by Loop-Mediated Isothermal Amplification. Plant Dis 2005, 89(7):705-711.
  • [12]Teixeira DC, Saillard C, Couture C, Martins EC, Wulff NA, Eveillard-Jagoueix S, Yamamoto PT, Ayres AJ, Bove JM: Distribution and quantification of Candidatus Liberibacter americanus, agent of huanglongbing disease of citrus in Sao Paulo State, Brasil, in leaves of an affected sweet orange tree as determined by PCR. Mol Cell Probes 2008, 22(3):139-150.
  • [13]Jagoueix S, Bove JM, Garnier M: PCR detection of the two ‘Candidatus’ Liberobacter species associated with greening disease of citrus. Mol Cell Probes 1996, 10(1):43-50.
  • [14]Fujikawa T, Iwanami T: Sensitive and robust detection of citrus greening (huanglongbing) bacterium “Candidatus Liberibacter asiaticus” by DNA amplification with new 16S rDNA-specific primers. Mol Cell Probes 2012, 26(5):194-197.
  • [15]Lin H, Chen C, Doddapaneni H, Duan Y, Civerolo EL, Bai X, Zhao X: A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. J Microbiol Methods 2010, 81(1):17-25.
  • [16]Kim JS, Wang N: Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Res Notes 2009, 2:37. BioMed Central Full Text
  • [17]Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000, 28(12):E63.
  • [18]Nagamine K, Hase T, Notomi T: Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002, 16(3):223-229.
  • [19]Kaneko H, Kawana T, Fukushima E, Suzutani T: Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 2007, 70(3):499-501.
  • [20]Kiatpathomchai W, Jaroenram W, Arunrut N, Jitrapakdee S, Flegel TW: Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods 2008, 153(2):214-217.
  • [21]Khunthong S, Jaroenram W, Arunrut N, Suebsing R, Mungsantisuk I, Kiatpathomchai W: Rapid and sensitive detection of shrimp yellow head virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods 2013, 188(1–2):51-56.
  • [22]Rigano LA, Marano MR, Castagnaro AP, Do Amaral AM, Vojnov AA: Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiol 2010, 10:176. BioMed Central Full Text
  • [23]Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun Y, Gottwald T: Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant Microbe Interact 2009, 22(8):1011-1020.
  • [24]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [25]Tindall KR, Kunkel TA: Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 1988, 27(16):6008-6013.
  • [26]LaBarre P, Hawkins KR, Gerlach J, Wilmoth J, Beddoe A, Singleton J, Boyle D, Weigl B: A simple, inexpensive device for nucleic acid amplification without electricity-toward instrument-free molecular diagnostics in low-resource settings. PLoS One 2011, 6(5):e19738.
  文献评价指标  
  下载次数:74次 浏览次数:45次