BMC Microbiology | |
Repertoire of novel sequence signatures for the detection of Candidatus Liberibacter asiaticus by quantitative real-time PCR | |
Nian Wang1  Charles M Rush2  Gerhard Pietersen3  Michael E Irey7  Michael Rogers6  Timothy A Ebert6  Xiaoling Deng8  M Caroline Roper4  Nadia Riera1  Qing Yan1  Sunitha Kogenaru5  | |
[1] Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred 33850, USA;Texas A&M AgriLife Research and Extension Center, Texas A&M University, Amarillo, USA;Department of Microbiology & Plant Pathology, ARC-Plant Protection Research Institute, University of Pretoria, Pretoria, South Africa;Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA;Present address: Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0676, USA;Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred 33850, USA;US Sugar Corporation, Clewiston, FL 33440, USA;Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, P. R. China | |
关键词: Citrus; Psyllid; Bacteria; Huanglongbing; Greening; Candidatus Liberibacter asiaticus; Diagnostic; Detection system; | |
Others : 1141907 DOI : 10.1186/1471-2180-14-39 |
|
received in 2013-11-02, accepted in 2014-02-12, 发布年份 2014 | |
【 摘 要 】
Background
Huanglongbing (HLB) or citrus greening is a devastating disease of citrus. The gram-negative bacterium Candidatus Liberibacter asiaticus (Las) belonging to the α-proteobacteria is responsible for HLB in North America as well as in Asia. Currently, there is no cure for this disease. Early detection and quarantine of Las-infected trees are important management strategies used to prevent HLB from invading HLB-free citrus producing regions. Quantitative real-time PCR (qRT-PCR) based molecular diagnostic assays have been routinely used in the detection and diagnosis of Las. The oligonucleotide primer pairs based on conserved genes or regions, which include 16S rDNA and the β-operon, have been widely employed in the detection of Las by qRT-PCR. The availability of whole genome sequence of Las now allows the design of primers beyond the conserved regions for the detection of Las explicitly.
Results
We took a complimentary approach by systematically screening the genes in a genome-wide fashion, to identify the unique signatures that are only present in Las by an exhaustive sequence based similarity search against the nucleotide sequence database. Our search resulted in 34 probable unique signatures. Furthermore, by designing the primer pair specific to the identified signatures, we showed that most of our primer sets are able to detect Las from the infected plant and psyllid materials collected from the USA and China by qRT-PCR. Overall, 18 primer pairs of the 34 are found to be highly specific to Las with no cross reactivity to the closely related species Ca. L. americanus (Lam) and Ca. L. africanus (Laf).
Conclusions
We have designed qRT-PCR primers based on Las specific genes. Among them, 18 are suitable for the detection of Las from Las-infected plant and psyllid samples. The repertoire of primers that we have developed and characterized in this study enhanced the qRT-PCR based molecular diagnosis of HLB.
【 授权许可】
2014 Kogenaru et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327172115770.pdf | 643KB | download | |
Figure 2. | 57KB | Image | download |
Figure 1. | 91KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Bové JM: Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 2006, 88(1):7-37.
- [2]do Carmo Teixeira D, Luc Danet J, Eveillard S, Cristina Martins E, de Jesus Junior WC, Takao Yamamoto P, Aparecido Lopes S, Beozzo Bassanezi R, Juliano Ayres A, Saillard C, Bové JM: Citrus huanglongbing in Sao Paulo State, Brazil: PCR detection of the 'Candidatus’ Liberibacter species associated with the disease. Mol Cell Probes 2005, 19(3):173-179.
- [3]Jagoueix S, Bové JM, Garnier M: Comparison of the 16S/23S ribosomal intergenic regions of “Candidatus Liberobacter asiaticum” and “Candidatus Liberobacter africanum”, the two species associated with citrus huanglongbing (greening) disease. Int J Syst Bacteriol 1997, 47(1):224-227.
- [4]Lopes SA, Frare GF, Bertolini E, Cambra M, Fernandes NG, Ayres AJ, Marin DR, Bové JM: Liberibacters associated with citrus Huanglongbing in Brazil: 'Candidatus Liberibacter asiaticus’ is heat tolerant, 'Ca. L. americanus’ is heat sensitive. Plant Dis 2009, 93(3):257-262.
- [5]Tatineni S, Sagaram US, Gowda S, Robertson CJ, Dawson WO, Iwanami T, Wang N: In planta distribution of 'Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology 2008, 98(5):592-599.
- [6]Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF: Detection of 'Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 2008, 98(4):387-396.
- [7]McClean APD, Oberholzer PCJ: Citrus psylla, a vector of the greening disease of sweet orange. South African J of Agricultural Sci 1965, 8:297-298.
- [8]Shi J, Pagliaccia D, Morgan R, Qiao Y, Pan S, Vidalakis G, Ma W: Novel diagnosis for Citrus Stubborn Disease by detection of a Spiroplasma citri-secreted protein. Phytopathology 2014, 104(2):188-195.
- [9]Chen J, Pu X, Deng X, Liu S, Li H, Civerolo E: A phytoplasma related to 'Candidatus phytoplasma asteri’ detected in citrus showing Huanglongbing (yellow shoot disease) symptoms in Guangdong, P. R. China. Phytopathology 2009, 99(3):236-242.
- [10]Teixeira DC, Wulff NA, Martins EC, Kitajima EW, Bassanezi R, Ayres AJ, Eveillard S, Saillard C, Bové JM: A phytoplasma closely related to the pigeon pea witches’-broom phytoplasma (16Sr IX) is associated with citrus huanglongbing symptoms in the state of Sao Paulo, Brazil. Phytopathology 2008, 98(9):977-984.
- [11]Wang N, Trivedi P: Citrus huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology 2013, 103(7):652-665.
- [12]Gottwald TR, da Graca JV, Bassanezi RB: Citrus huanglongbing: the pathogen and its impact. Plant Health Progress 2007. doi:10.1094/PHP-2007-0906-1001-RV
- [13]Okuda M, Mitsuhito M, Tanaka Y, Subandiyah S, Iwanami T: Characterization of the tufB-secE-nusG-rplKSJL-ropB gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Dis 2005, 89(7):705-711.
- [14]Villechanoux S, Garnier M, Renaudin J, Bové J: Detection of several strains of the bacterium-like organism of citrus greening disease by DNA probes. Curr Microbiol 1992, 24(2):89-95.
- [15]Garnier M, Martin-Gros G, Bové JM: Monoclonal antibodies against the bacterial-like organism associated with citrus greening disease. Ann Inst Pasteur Microbiol 1987, 138(6):639-650.
- [16]Gurtler V, Stanisich VA: New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 1996, 142(1):3-16.
- [17]Hocquellet A, Toorawa P, Bové JM, Garnier M: Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the beta operon. Mol Cell Probes 1999, 13(5):373-379.
- [18]Hung TH, Wu ML, Su HJ: Development of a rapid method for the diagnosis of Citrus Greening Disease using the Polymerase Chain Reaction. J Phytopathol 1999, 147(10):599-604.
- [19]Jagoueix S, Bové JM, Garnier M: PCR detection of the two 'Candidatus’ Liberobacter species associated with greening disease of citrus. Mol Cell Probes 1996, 10(1):43-50.
- [20]Shang S, Fu J, Dong G, Hong W, Du L, Yu X: Establishment and analysis of specific DNA patterns in 16S-23S rRNA gene spacer regions for differentiating different bacteria. Chin Med J (Engl) 2003, 116(1):129-133.
- [21]Fujikawa T, Iwanami T: Sensitive and robust detection of citrus greening (huanglongbing) bacterium “Candidatus Liberibacter asiaticus” by DNA amplification with new 16S rDNA-specific primers. Mol Cell Probes 2012, 26(5):194-197.
- [22]Teixeira DC, Saillard C, Couture C, Martins EC, Wulff NA, Eveillard-Jagoueix S, Yamamoto PT, Ayres AJ, Bové JM: Distribution and quantification of Candidatus Liberibacter americanus, agent of huanglongbing disease of citrus in Sao Paulo State, Brasil, in leaves of an affected sweet orange tree as determined by PCR. Mol Cell Probes 2008, 22(3):139-150.
- [23]Li W, Hartung JS, Levy L: Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J Microbiol Methods 2006, 66(1):104-115.
- [24]Li W, Li D, Twieg E, Hartung JS, Levy L: Optimized quantification of unculturable Candidatus Liberibacter spp. in host plants using real-time PCR. Plant Dis 2008, 92(6):854-861.
- [25]Morgan JK, Zhou L, Li W, Shatters RG, Keremane M, Duan YP: Improved real-time PCR detection of 'Candidatus Liberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes. Mol Cell Probes 2012, 26(2):90-98.
- [26]Wang Z, Yin Y, Hu H, Yuan Q, Peng G, Xia Y: Development and application of molecular-based diagnosis for 'Candidatus Liberibacter asiaticus’, the causal pathogen of citrus huanglongbing. Plant Pathol 2006, 55(5):630-638.
- [27]Lane D: 16 s/23s rRNA sequencing. In Nucleic acid techniques in bacterial systematics. Edited by Stackebrandt E, Goodfellow M. West Sussex, United Kingdom: John Wiley & Sons; 1991:115-175.
- [28]Nageswara-Rao M, Irey M, Garnsey SM, Gowda S: Candidate gene markers for Candidatus Liberibacter asiaticus for detecting citrus greening disease. J Biosci 2013, 38(2):229-237.
- [29]Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun Y, Gottwald T: Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus’ obtained through metagenomics. MPMI 2009, 22(8):1011-1020.
- [30]Lin H, Han CS, Liu B, Lou B, Bai X, Deng C, Civerolo EL, Gupta G: Complete genome sequence of a Chinese strain of “Candidatus Liberibacter asiaticus”. Genome Announc 2013., 1(2) doi:10.1128/genomeA.00184-13.
- [31]Lin H, Coletta-Filho HD, Han CS, Lou B, Civerolo EL, Machado MA, Gupta G: Draft genome sequence of “Candidatus Liberibacter americanus” bacterium associated with Citrus Huanglongbing in Brazil. Genome Announc 2013., 1(3) doi:10.1128/genomeA.00275-13
- [32]Leonard MT, Fagen JR, Davis-Richardson AG, Davis MJ, Triplett EW: Complete genome sequence of Liberibacter crescens BT-1. Stand Genomic Sci 2012, 7(2):271-283.
- [33]Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM: The complete genome sequence of 'Candidatus Liberibacter solanacearum’, the bacterium associated with potato zebra chip disease. PLoS One 2011, 6(4):e19135.
- [34]Ho CC, Yuen KY, Lau SK, Woo PC: Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104:H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 2011, 49(10):3714-3716.
- [35]Phillippy AM, Ayanbule K, Edwards NJ, Salzberg SL: Insignia: a DNA signature search web server for diagnostic assay development. Nucleic Acids Res 2009, 37(suppl 2):W229-W234.
- [36]Phillippy AM, Mason JA, Ayanbule K, Sommer DD, Taviani E, Huq A, Colwell RR, Knight IT, Salzberg SL: Comprehensive DNA signature discovery and validation. PLoS Comput Biol 2007, 3(5):e98.
- [37]Pritchard L, Holden NJ, Bielaszewska M, Karch H, Toth IK: Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains. PLoS One 2012, 7(4):e34498.
- [38]Slezak T, Kuczmarski T, Ott L, Torres C, Medeiros D, Smith J, Truitt B, Mulakken N, Lam M, Vitalis E, Zemla A, Zhou CE, Gardner S: Comparative genomics tools applied to bioterrorism defence. Brief Bioinform 2003, 4(2):133-149.
- [39]Vijaya Satya R, Kumar K, Zavaljevski N, Reifman J: A high-throughput pipeline for the design of real-time PCR signatures. BMC Bioinforma 2010, 11:340. BioMed Central Full Text
- [40]Vijaya Satya R, Zavaljevski N, Kumar K, Bode E, Padilla S, Wasieloski L, Geyer J, Reifman J: In silico microarray probe design for diagnosis of multiple pathogens. BMC Genomics 2008, 9:496. BioMed Central Full Text
- [41]Nielsen R: Molecular signatures of natural selection. Annu Rev Genet 2005, 39:197-218.
- [42]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
- [43]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
- [44]Liu R, Zhang P, Pu X, Xing X, Chen J, Deng X: Analysis of a prophage gene frequency revealed population variation of 'Candidatus Liberibacter asiaticus’ from two citrus-growing provinces in China. Plant Dis 2010, 95(4):431-435.
- [45]Tyler HL, Roesch LF, Gowda S, Dawson WO, Triplett EW: Confirmation of the sequence of 'Candidatus Liberibacter asiaticus’ and assessment of microbial diversity in Huanglongbing-infected citrus phloem using a metagenomic approach. MPMI 2009, 22(12):1624-1634.
- [46]Kim JS, Wang N: Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Research Notes 2009, 2:37. BioMed Central Full Text