期刊论文详细信息
BMC Neuroscience
White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: a longitudinal study
Till Sprenger5  Ernst-Wilhelm Radue5  Ludwig Kappos1  Christoph Stippich2  Yvonne Naegelin1  Jason P Lerch4  M Mallar Chakravarty3  Laura Gaetano1  Stefano Magon1 
[1] Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland;Department of Radiology and Nuclear Medicine, Division of Diagnostic and Interventional Neuroradiology, University Hospital Basel, Basel, Switzerland;Department of Psychiatry and the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada;Department of Medical Biophysics, University of Toronto, Toronto, Canada;Medical Image Analysis Center, University Hospital Basel, Basel, Switzerland
关键词: Longitudinal analysis;    Lesion filling;    Cortical thickness;    Multiple sclerosis;   
Others  :  1091111
DOI  :  10.1186/1471-2202-15-106
 received in 2014-04-25, accepted in 2014-08-28,  发布年份 2014
PDF
【 摘 要 】

Background

Previous studies have demonstrated that white matter (WM) lesions bias automated brain tissue classifications and cerebral volume measurements. However, filling WM lesions using the intensity of neighbouring normal-appearing WM has been shown to increase the accuracy of automated volume measurements in the brain. In the present study, we investigate the influence of WM lesions on cortical thickness (CTh) measures and assessed the impact of lesion filling on both cross-sectional/longitudinal and global/regional measurements of CTh in multiple sclerosis (MS) patients.

Methods

Fifty MS patients were studied at baseline as well as after three and six years of follow-up. CTh was estimated using a fully automated pipeline (CIVET) on T1-weighted magnetic resonance images data acquired at 1.5 Tesla without (original) and with WM lesion filling (filled). WM lesions were semi-automatically segmented and then filled with the mean intensity of the neighbouring voxels. For both original and filled T1 images we investigated and compared the main CIVET’s steps: tissue classification, surfaces generation and CTh measurement.

Results

On the original T1 images, the majority of WM lesion volume (72%) was wrongly classified as gray matter (GM). After lesion filling the accuracy of WM lesions classification improved significantly (p < 0.001, 94% of WM lesion volume correctly classified) as well as the WM surface generation (p < 0.0001). The mean CTh computed on the original T1 images, overall time points, was significantly thinner (p < 0.001) compared the CTh estimated on the filled T1 images. The vertex-wise longitudinal analysis performed on the filled T1 images showed an increased number of vertices in the fronto-temporal region with a significantly decrease of CTh over time compared the analysis performed on the original images.

Conclusion

These results indicate that WM lesions bias the CTh estimation both cross-sectionally as well as longitudinally. The lesion filling approach significantly improved the accuracy of the regional CTh estimation and has an impact also on the global estimation of CTh.

【 授权许可】

   
2014 Magon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128165644124.pdf 2175KB PDF download
Figure 5. 86KB Image download
Figure 4. 81KB Image download
Figure 3. 72KB Image download
20150802010539361.pdf 807KB PDF download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Battaglini M, Jenkinson M, De Stefano N: Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 2012, 33:2062-2071.
  • [2]Datta S, Narayana PA: A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis. NeuroImage Clin 2013, 2:184-196.
  • [3]De Boer R, Vrooman HA, Ikram MA, Vernooij MW, Breteler MMB, Van der Lugt A, Niessen WJ: Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage 2010, 51:1047-1056.
  • [4]Valverde S, Oliver A, Cabezas M, Roura E, Lladó X: Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations. J Magn Reson Imaging 2014. Epub ahead of print
  • [5]Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CAM: Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 2010, 32:223-228.
  • [6]Gelineau-Morel R, Tomassini V, Jenkinson M, Johansen-Berg H, Matthews PM, Palace J: The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum Brain Mapp 2012, 33:2802-2814.
  • [7]Sdika M, Pelletier D: Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum Brain Mapp 2009, 30:1060-1067.
  • [8]Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002, 17:479-489.
  • [9]Creze M, Versheure L, Besson P, Sauvage C, Leclerc X, Jissendi-Tchofo P: Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade. Hum Brain Mapp 2014, 35:2817-2835.
  • [10]Hartikainen P, Räsänen J, Julkunen V, Niskanen E, Hallikainen M, Kivipelto M, Vanninen R, Remes AM, Soininen H: Cortical thickness in frontotemporal dementia, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 2012, 30:857-874.
  • [11]Thormodsen R, Rimol LM, Tamnes CK, Juuhl-Langseth M, Holmén A, Emblem KE, Rund BR, Agartz I: Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Res 2013, 214:190-196.
  • [12]Fischl B, Dale AM: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000, 97:11050-11055.
  • [13]Lerch JP, Evans AC: Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 2005, 24:163-173.
  • [14]Achiron A, Chapman J, Tal S, Bercovich E, Gil H: Superior temporal gyrus thickness correlates with cognitive performance in multiple sclerosis. Brain Struct Funct 2013, 218:943-950.
  • [15]Calabrese M, Atzori M, Bernardi V, Morra A, Romualdi C, Rinaldi L, McAuliffe MJ, Barachino L, Perini P, Fischl B, Battistin L, Gallo P: Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol 2007, 254:1212-1220.
  • [16]Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC: Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage 2007, 34:509-517.
  • [17]He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 2009, 132(Pt 12):3366-3379.
  • [18]Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS, Cutter GR, Lublin FD, Wolinsky JS: Regional cortical thickness in relapsing remitting multiple sclerosis: a multi-center study. NeuroImage Clin 2012, 2:120-131.
  • [19]Sailer M, Fischl B, Salat D, Tempelmann C, Schönfeld MA, Busa E, Bodammer N, Heinze H-J, Dale A: Focal thinning of the cerebral cortex in multiple sclerosis. Brain 2003, 126(Pt 8):1734-1744.
  • [20]Pellicano C, Gallo A, Li X, Ikonomidou VN, Evangelou IE, Ohayon JM, Stern SK, Ehrmantraut M, Cantor F, McFarland HF, Bagnato F: Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch Neurol 2010, 67:447-453.
  • [21]Shiee N, Bazin P-L, Cuzzocreo JL, Ye C, Kishore B, Carass A, Calabresi PA, Reich DS, Prince JL, Pham DL: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation. Hum Brain Mapp 2014, 35:3401-3385.
  • [22]Calabrese M, Rinaldi F, Grossi P, Mattisi I, Bernardi V, Favaretto A, Perini P, Gallo P: Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 2010, 16:1220-1228.
  • [23]Liu Y, Xie T, He Y, Duan Y, Huang J, Ren Z, Gong G, Wang J, Ye J, Dong H, Butzkueven H, Shi F-D, Shu N, Li K: Cortical thinning correlates with cognitive change in multiple sclerosis but not in neuromyelitis optica. Eur Radiol 2014, 24:2334-2343.
  • [24]Collins DL, Peters TM, Evans ACHCJ, Collins DL, Peters TM, Evans ACHCJ: Automatic 3- D model-based neuroanatomical segmentation. Hum Brain Mapp 1995, 3:190-208.
  • [25]Zijdenbos AP, Forghani R, Evans AC: Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 2002, 21:1280-1291.
  • [26]Collins DL, Neelin P, Peters TM, Evans AC: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994, 18:192-205.
  • [27]Lyttelton O, Boucher M, Robbins S, Evans A: An unbiased iterative group registration template for cortical surface analysis. Neuroimage 2007, 34:1535-1544.
  • [28]Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001, 356:1293-1322.
  • [29]Sled JG, Zijdenbos AP, Evans AC: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998, 17:87-97.
  • [30]Tohka J, Zijdenbos A, Evans A: Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 2004, 23:84-97.
  • [31]Kim JS, Singh V, Lee JKJM, Lerch J, Ad-Dab’bagh Y, MacDonald D, Kim SI, Evans AC: Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 2005, 27:210-221.
  • [32]Jones SE, Buchbinder BR, Aharon I: Three-dimensional mapping of cortical thickness using Laplace’s Equation. Hum Brain Mapp 2000, 11:12-32.
  • [33]Chung MK, Worsley KJ, Robbins S, Paus T, Taylor J, Giedd JN, Rapoport JL, Evans AC: Deformation-based surface morphometry applied to gray matter deformation. Neuroimage 2003, 18:198-213.
  • [34]Royston P: An extension of Shapiro and Wilk’s W test for normality to large samples. Appl Stat 1982, 31:115-124.
  • [35]Brown MB, Forsythe AB: Robust tests for equality of variances. J Am Stat Assoc 1974, 69:364-367.
  • [36]Zhou D, Lebel C, Evans A, Beaulieu C: Cortical thickness asymmetry from childhood to older adulthood. Neuroimage 2013, 83:66-74.
  • [37]Fahim C, Yoon U, Das S, Lyttelton O, Chen J, Arnaoutelis R, Rouleau G, Sandor P, Frey K, Brandner C, Evans AC: Somatosensory-motor bodily representation cortical thinning in Tourette: effects of tic severity, age and gender. Cortex 2010, 46:750-760.
  • [38]Zhou D, Lebel C, Lepage C, Rasmussen C, Evans A, Wyper K, Pei J, Andrew G, Massey A, Massey D, Beaulieu C: Developmental cortical thinning in fetal alcohol spectrum disorders. Neuroimage 2011, 58:16-25.
  • [39]Truong W, Minuzzi L, Soares CN, Frey BN, Evans AC, Macqueen GM, Hall GBC: Changes in cortical thickness across the lifespan in major depressive disorder. Psychiatry Res 2013, 214:204-211.
  • [40]Nakamura K, Fisher E: Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage 2009, 44:769-776.
  • [41]Popescu V, Ran NCG, Barkhof F, Chard DT, Wheeler-Kingshott CA, Vrenken H: Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. NeuroImage Clin 2014, 4:366-373.
  • [42]Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell’Oglio E, Bakshi A, Chitnis T, Khoury SJ, Weiner HL, Guttmann CRG, Bakshi R, Neema M: The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. AJNR Am J Neuroradiol 2012, 33:1579-1585.
  • [43]MacDonald D, Kabani N, Avis D, Evans AC: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 2000, 12:340-356.
  文献评价指标  
  下载次数:7次 浏览次数:8次