期刊论文详细信息
BMC Genomics
Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements
Kwai Lin Thong2  Lay Ching Chai2  Cindy Shuan Ju Teh3  Han Ming Gan1  Kien-Pong Yap2 
[1] School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46100 Selangor, Malaysia;Laboratory of Biomedical Science and Molecular Microbiology, Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia;Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
关键词: Protein modelling;    Infection;    Virulence;    Variation;    Strain;    Protein;    Evolution;    Sequence;    Enterobacteriaceae;    Phylogenetic;    T6SS;    SPI;    zot;    Pathogen;    Comparative genomics;    Genomes;    Typhoid;    S. Typhi;   
Others  :  1091605
DOI  :  10.1186/1471-2164-15-1007
 received in 2013-08-22, accepted in 2014-11-06,  发布年份 2014
PDF
【 摘 要 】

Background

Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection.

Results

A comparative genomics analysis combined with a phylogenomic analysis revealed that the strains from the outbreak and carrier were closely related with microvariations and possibly derived from a common ancestor. Additionally, the comparative genomics analysis with all of the other completely sequenced S. Typhi genomes revealed that strains BL196 and CR0044 exhibit unusual genomic variations despite S. Typhi being generally regarded as highly clonal. The two genomes shared distinct chromosomal architectures and uncommon genome features; notably, the presence of a ~10 kb novel genomic island containing uncharacterised virulence-related genes, and zot in particular. Variations were also detected in the T6SS system and genes that were related to SPI-10, insertion sequences, CRISPRs and nsSNPs among the studied genomes. Interestingly, the carrier strain CR0044 harboured far more genetic polymorphisms (83% mutant nsSNPs) compared with the closely related BL196 outbreak strain. Notably, the two highly related virulence-determinant genes, rpoS and tviE, were mutated in strains BL196 and CR0044, respectively, which revealed that the mutation in rpoS is stabilising, while that in tviE is destabilising. These microvariations provide novel insight into the optimisation of genes by the pathogens. However, the sporadic strain was found to be far more conserved compared with the others.

Conclusions

The uncommon genomic variations in the two closely related BL196 and CR0044 strains suggests that S. Typhi is more diverse than previously thought. Our study has demonstrated that the pathogen is continually acquiring new genes through horizontal gene transfer in the process of host adaptation, providing novel insight into its unusual genomic dynamics. The understanding of these strains and virulence factors, and particularly the strain that is associated with the large outbreak and the less studied asymptomatic Typhi carrier in the population, will have important impact on disease control.

【 授权许可】

   
2014 Yap et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128173135451.pdf 1608KB PDF download
Figure 5. 166KB Image download
Figure 4. 92KB Image download
Figure 3. 121KB Image download
Figure 2. 53KB Image download
Figure 1. 179KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Crump JA, Mintz ED: Global trends in typhoid and paratyphoid fever. Clin Infect Dis 2010, 50:241-246.
  • [2]Gonzalez-Escobedo G, Marshall JM, Gunn J: Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol 2010, 9:9-14.
  • [3]Ministry of Health Malaysia: Epidemiology of foodborne diseases in Malaysia. Putrajaya, Malaysia: Director General Ministry of Health Malaysia Technical Report: Epidemiology of foodborne diseases in Malaysia; 2006:86-87.
  • [4]Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G: High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 2008, 40:987-993.
  • [5]Vaishnavi C, Kochhar R, Singh G, Kumar S, Singh S, Singh K: Epidemiology of typhoid carriers among blood donors and patients with biliary, gastrointestinal and other related diseases. Microbiol Immun 2005, 49:107.
  • [6]Yap KP, Teh CSJ, Baddam R, Chai LC, Kumar N, Avasthi TS, Ahmed N, Thong KL: Insights from the genome sequence of a Salmonella enterica serovar Typhi strain associated with a sporadic case of typhoid fever in Malaysia. J Bacteriol 2012, 194:5124-5125.
  • [7]Achtman M: Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 2008, 62:53-70.
  • [8]Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ: Typhoid fever. N Engl J Med 2002, 347:1770-1782.
  • [9]Thong KL, Puthucheary SD, Pang T: Genome size variation among recent human isolates of Salmonella typhi. Res Microbiol 1997, 148:229-235.
  • [10]Thong KL, Passey M, Clegg A, Combs BG, Yassin RM, Pang T: Molecular analysis of isolates of Salmonella typhi obtained from patients with fatal and nonfatal typhoid fever. J Clin Microbiol 1996, 34:1029-1033.
  • [11]Fraser-Liggett CM: Insights on biology and evolution from microbial genome sequencing. Genome Res 2005, 15:1603-1610.
  • [12]Dobrindt U, Hacker J: Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol 2001, 4:550-557.
  • [13]Wren BW: Microbial genome analysis: insights into virulence, host adaptation and evolution. Nature Rev 2000, 1:30-39.
  • [14]Ahmed N, Dobrindt U, Hacker J, Hasnain SE: Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nature Rev Microbiol 2008, 6:387-394.
  • [15]Lawrence JG, Ochman H: Reconciling the many faces of lateral gene transfer. Trends Microbiol 2002, 10:1-4.
  • [16]Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev 2005, 15:589-594.
  • [17]Baddam R, Kumar N, Thong KL, Ngoi ST, Teh CS, Yap KP, Chai LC, Avasthi TS, N. Ahmed N: Genetic fine structure of a Salmonella enterica serovar Typhi strain associated with the 2005 outbreak of typhoid fever in Kelantan, Malaysia. J Bacteriol 2012, 194:3565-3566.
  • [18]Yap KP, Gan HM, Teh CSJ, Baddam R, Chai LC, Kumar N, Avasthi TS, Ahmed N, Thong KL: Genome sequence and comparative pathogenomics analysis of a Salmonella enterica serovar Typhi strain associated with a typhoid carrier in Malaysia. J Bacteriol 2012, 194:5970-5971.
  • [19]Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, Achtman M: Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2002, 2:39-45.
  • [20]Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MTG, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, Ó’Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG: Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 2001, 413:848-852.
  • [21]Deng W, Liou SR, Plunkett G III, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR: Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 2003, 185:2330-2337.
  • [22]Ong SY, Pratap CB, Wan X, Hou S, Rahman AYA, Saito JA, Nath G, Alam M: Complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12. J Bacteriol 2012, 194:2115.
  • [23]Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M, Parkhill J, MacLennan CA, Heyderman RS, Dougan G: Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-saharan Africa have a distinct genotype. Genome Res 2009, 19:2279-2287.
  • [24]Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrázek J, Nierman WC, DeShazer D: Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 2007, 64:1466-1485.
  • [25]Pukatzki S, McAuley SB, Miyata ST: The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 2009, 12:11-17.
  • [26]Bingle LE, Bailey CM, Pallen MJ: Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008, 11:3-8.
  • [27]Fernanda DP, Paiva JB, Nakazato G, Lancellotti M, Sircili MP, Stehling EG, Silveira WD, Sperandio V: Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiol 2011, 157:2954-2962.
  • [28]Parsons DA, Heffron H: sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 2005, 73:4338-4345.
  • [29]Ochman H, Groisman EA: Distribution of pathogenicity islands in Salmonella spp. Infect Immun 1996, 64:5410-5412.
  • [30]Faucher SP, Viau C, Gros PP, Daigle F, Moual HL: The prpZ gene cluster encoding eukaryotic‒type Ser/Thr protein kinases and phosphatases is repressed by oxidative stress and involved in Salmonella enterica serovar Typhi survival in human macrophages. FEMS Microbiol Lett 2008, 281:160-166.
  • [31]Schofield MJ, Hsieh P: DNA MISMATCH REPAIR: molecular mechanisms and biological function. Annu Rev Microbiol 2003, 57:579-608.
  • [32]Bueno SM, Santiviago CA, Murillo AA, Fuentes JA, Trombert AN, Rodas PI, Youderian P, Mora GC: Precise excision of the large pathogenicity island, SPI7, in Salmonella enterica serovar Typhi. J Bacteriol 2004, 186:3202-3213.
  • [33]Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TAH, Acosta CJ, Farrar J, Dougan G, Achtman M: Evolutionary history of Salmonella Typhi. Science 2006, 314:1301-1304.
  • [34]Viong V, Thong KL, Yusof MYM, Hanifah YA, Sam JIC, Hassan H: Macrorestriction analysis and antimicrobial susceptibility profiling of Salmonella enterica at a university teaching hospital, Kuala Lumpur. Jpn J Infect Dis 2010, 63:317-322.
  • [35]Edwards RA, Olsen GJ, Maloy SR: Comparative genomics of closely related salmonellae. Trends Microbiol 2002, 10:94-99.
  • [36]Threlfall EJ, Torre E, Ward LR, Dávalos-Pérez A, Rowe B, Gibert I: Insertion sequence IS200 fingerprinting of Salmonella typhi: an assessment of epidemiological applicability. Epidemiol Infect 1994, 112:253-262.
  • [37]Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J, Watanabe H, Hayashi T: Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 2009, 19:1809-1816.
  • [38]Kusumoto M, Ooka T, Nishiya Y, Ogura Y, Saito T, Sekine Y, Iwata T, Akiba M, Hayashi T: Insertion sequence-excision enhancer removes transposable elements from bacterial genomes and induces various genomic deletions. Nat Commun 2011, 2:152.
  • [39]Casjens S: Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 2003, 49:277-300.
  • [40]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
  • [41]Horvath P, Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327:167-170.
  • [42]Cady KC, O’Toole GA: Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J Bacteriol 2011, 193:3433-3445.
  • [43]Langille MG, Brinkman FS: IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 2009, 25:664-665.
  • [44]Michael H: Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 2004, 294:95-102.
  • [45]Radnedge L, Agron PG, Worsham PL, Andersen GL: Genome plasticity in Yersinia pestis. Microbiol 2002, 148:1687-1698.
  • [46]Rosso ML, Chauvaux S, Dessein R, Laurans C, Frangeul L, Lacroix C, Schiavo A, Dillies MA, Foulon J, Coppée JY, Médigue C, Carniel E, Simonet M, Marceau M: Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression. BMC Microbiol 2008, 8:211. BioMed Central Full Text
  • [47]Hazen TH, Sahl JW, Redman JC, Morris CR, Daugherty SC, Chibucos MC, Sengamalay NA, Fraser-Liggett CM, Steinsland H, Whittam TS, Whittam B, Manning SD, Rasko DA: Draft genome sequences of the diarrheagenic Escherichia coli Collection. J Bacteriol 2012, 194:3026-3027.
  • [48]Kurazono H, Yamamoto S, Nakano M, Nair GB, Terai A, Chaicumpa W, Hayashi H: Characterization of a putative virulence island in the chromosome of uropathogenic Escherichia coli possessing a gene encoding a uropathogenic-specific protein. Microb Pathog 2000, 28:183-189.
  • [49]Mahendran V, Tan YS, Riordan SM, Grimm MC, Day AS, Lemberg DA, Octavia S, Lan R, Zhang L: The prevalence and polymorphisms of zonula occluden toxin gene in multiple campylobacter concisus strains isolated from saliva of patients with inflammatory bowel disease and controls. PLoS One 2013, 8:75525.
  • [50]Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A: Zonula occludens toxin structure-function analysis. J Biol Chem 2001, 276:19160-19165.
  • [51]Groschwitz KR, Hogan SP: Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immun 2009, 124:3-20.
  • [52]Lee A, White N, van der Walle CF: The intestinal zonula occludens toxin (ZOT) receptor recognises non-native ZOT conformers and localises to the intercellular contacts. FEBS Lett 2003, 555:638-642.
  • [53]Goldblum SE, Rai U, Tripathi A, Thakar M, De Leo L, Di Toro N, Not T, Ramachandran R, Puche AC, Hollenberg MD, Fasano A: The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J 2011, 25:144-158.
  • [54]Lu Y, Chen S, Dong H, Sun H, Peng D, Liu X: Identification of genes responsible for biofilm formation or virulence in Salmonella enterica Serovar Pullorum. Avian Dis 2012, 56:134-143.
  • [55]Robbe‒saule V, Coynault C, Norel F: The live oral typhoid vaccine Ty21a is a rpoS mutant and is susceptible to various environmental stresses. FEMS Microbiol Lett 2006, 126:171-176.
  • [56]Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG: The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 1992, 89:11978-11982.
  • [57]Santader J, Roland KL, Curtiss R: Regulation of Vi capsular polysaccharide synthesis in Salmonella enterica serotype Typhi. J Infect Dev Ctries 2008, 2:412-420.
  • [58]Baker S, Sarwar Y, Aziz H, Haque A, Ali A, Dougan G, Wain J, Haque A: Detection of Vi-negative Salmonella enterica serovar typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan. J Clin Microbiol 2005, 43:4418-4425.
  • [59]Arricau N, Hermant D, Waxin H, Ecobichon C, Duffey PS, Popoff MY: The RcsB–RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 2002, 29:835-850.
  • [60]Santader J, Wanda SY, Nickerson CA, Curtiss R: Role of RpoS in fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella enterica serotype Typhi. Infect Immun 2007, 75:1382-1392.
  • [61]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008, 9:40. BioMed Central Full Text
  • [62]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods 2010, 4:248-249.
  • [63]Ng PC, Henikoff S: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31:3812-3814.
  • [64]Choi Y, Sims GE, Murphy S, Miller JR, Chan AP: Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012, 7:e46688.
  • [65]Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A: PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003, 13:2129-2141.
  • [66]Capriotti E, Fariselli P, Rossi I, Casadio R: A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics 2008, 9:S6.
  • [67]Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9:299-306.
  • [68]Hyatt D, Chen GL, LoCascio P, Land M, Larimer F, Hauser L: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119. BioMed Central Full Text
  • [69]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [70]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [71]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [72]Alikha NF, Petty NK, Zakour NLB, Beatson SA: BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011, 12:402. BioMed Central Full Text
  • [73]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
  • [74]Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002, 30:2478-2483.
  • [75]Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J: PGAP: pan-genomes analysis pipeline. Bioinformatics 2012, 28:416-418.
  • [76]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39:W347-W352.
  • [77]Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics 2005, 21:3422-3423.
  • [78]Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E: Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014, 31:1077-1088.
  • [79]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490.
  • [80]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
  • [81]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [82]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27:1164-1165.
  • [83]Bromberg Y, Rost B: SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 2007, 35:3823-3835.
  • [84]Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J: PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 2014, 1:e1003440.
  • [85]Lindahl E, Azuara C, Koehl P, Delarue M: NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 2006, 34:W52-W56.
  • [86]Kaplan W, Littlejohn TG: Swiss-PDB viewer (deep view). Brief Bioinform 2001, 2:195-197.
  • [87]Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL: MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinformatics 2012, 28:1278-1279.
  • [88]Xu D, Zhang Y: Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 2011, 101:2525-2534.
  • [89]Zhang J, Liang Y, Zhang Y: Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 2011, 19:1784-1795.
  • [90]Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996, 8:477-486.
  • [91]Hooft RWW, Vriend G, Sander C, Abola EE: Errors in protein structures. Nature 1996, 381:272.
  • [92]Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35:W407-W410.
  文献评价指标  
  下载次数:122次 浏览次数:62次