期刊论文详细信息
BMC Microbiology
Alterations of protein expression in conditions of copper-deprivation for Paracoccidioides lutzii in the presence of extracellular matrix components
Maria José Soares Mendes Giannini2  Ana Marisa Fusco Almeida2  Carlos Alberto Labate1  Mônica Teresa Veneziano Labate1  Rosângela Aparecida Moraes da Silva2  Roberta Peres da Silva2  Caroline Maria Marcos2  Marcelo Teruyuki Matsumoto2  Julhiany de Fátima da Silva2  Haroldo Cesar de Oliveira2 
[1] Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz, Universidade de São Paulo, Laboratório Multiusuários Centralizado de Genômica Funcional Aplicada à Agropecuária e Agroenergia, Piracicaba, São Paulo, Brazil;Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Laboratório de Micologia Clinica, Rodovia Araraquara-Jaú, Km 1, Araraquara, SP, Brazil
关键词: Paracoccidioidomycosis;    Protein expression;    Adhesion;    Copper;    Paracoccidioides spp;   
Others  :  1090793
DOI  :  10.1186/s12866-014-0302-7
 received in 2014-07-07, accepted in 2014-11-19,  发布年份 2014
PDF
【 摘 要 】

Background

Paracoccidioides spp is a fungi genus and the agent of paracoccidioidomycosis. The strategies of infection used by these pathogens involve the expression of proteins related to adaptation to the host, particularly regarding the uptake of micronutrients. This study analyzed the adhesion of Paracoccidioides lutzii during conditions of copper (Cu) and iron (Fe) deprivation, while also evaluating the proteins expressed in conditions of Cu depletion in the presence of four extracellular matrix (ECM) components (laminin, fibronectin and types I and IV collagen).

Results

We cultured the P. lutzii in a chemically defined media without Cu and Fe. The fungus was then placed in contact with different ECM components and adhesion was evaluated. A significant increase in binding to all ECM components was observed when the fungus was cultured without Cu; which might be related to some adhesins expression. A proteomic assay was developed and revealed 39 proteins expressed that are involved in processes such as virulence, protein synthesis, metabolism, energy, transcription, transport, stress response and the cell cycle when the fungus was interacting with the ECM components. The up-regulated expression of two important adhesins, enolase and 14-3-3, was observed at the fungal cell wall during the interaction with the ECM components, indicating the role of these proteins in the Paracoccidioides–host interaction.

Conclusions

This study is important for determining prospective proteins that may be involved in the interaction of Paracoccidioides with a host. Understanding the adaptive response to different growth conditions, elucidating the processes of adhesion and cell invasion, and identifying the proteins that are differentially expressed during the fungus-host interaction may help elucidate mechanisms used for survival and growth of Paracoccidioides in various human tissues.

【 授权许可】

   
2014 Oliveira et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128163344676.pdf 4145KB PDF download
Figure 10. 25KB Image download
Figure 9. 77KB Image download
Figure 8. 51KB Image download
Figure 7. 18KB Image download
Figure 6. 220KB Image download
Figure 5. 35KB Image download
Figure 4. 54KB Image download
Figure 3. 56KB Image download
Figure 2. 39KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Matute DR, McEwen JG, Puccia R, Montes BA, San-Blas G, Bagagli E, Rauscher JT, Restrepo A, Morais F, Niño-Vega G, Taylor JW: Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol 2006, 23(1):65-73.
  • [2]Matute DR, Sepulveda VE, Quesada LM, Goldman GH, Taylor JW, Restrepo A, McEwen JG: Microsatellite analysis of three phylogenetic species of Paracoccidioides brasiliensis. J Clin Microbiol 2006, 44(6):2153-2157.
  • [3]Carrero LL, Niño-Vega G, Teixeira MM, Carvalho MJ, Soares CM, Pereira M, Jesuino RS, McEwen JG, Mendoza L, Taylor JW, Felipe MS, San-Blas G: New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen. Fungal Genet Biol 2008, 45(5):605-612.
  • [4]Teixeira MM, Theodoro RC, de Carvalho MJ, Fernandes L, Paes HC, Hahn RC, Mendoza L, Bagagli E, San-Blas G, Felipe MS: Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol 2009, 52(2):273-283.
  • [5]Franco M: Host-parasite relationships in paracoccidioidomycosis. J Med Vet Mycol 1987, 25(1):5-18.
  • [6]Mendes-Giannini MJ, Taylor ML, Bouchara JB, Burger E, Calich VL, Escalante ED, Hanna SA, Lenzi HL, Machado MP, Miyaji M, Monteiro Da Silva JL, Mota EM, Restrepo A, Restrepo S, Tronchin G, Vincenzi LR, Xidieh CF, Zenteno E: Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 2000, 38(Suppl 1):113-123.
  • [7]Mendes-Giannini MJ, Monteiro da Silva JL, de Fátima da Silva J, Donofrio FC, Miranda ET, Andreotti PF, Soares CP: Interactions of Paracoccidioides brasiliensis with host cells: recent advances. Mycopathologia 2008, 165(4–5):237-248.
  • [8]Sampermans S, Mortier J, Soares EV: Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 2005, 98(2):525-531.
  • [9]Kim BE, Nevitt T, Thiele DJ: Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 2008, 4(3):176-185.
  • [10]Rutherford JC, Bird AJ: Metal-responsive transcription factors that regulate iron, Zn, and copper homeostasis in eukaryotic cells. Eukaryot Cell 2004, 3(1):1-13.
  • [11]Silva MG, Schrank A, Bailão EF, Bailão AM, Borges CL, Staats CC, Parente JA, Pereira M, Salem-Izacc SM, Mendes-Giannini MJ, Oliveira RM, Silva LK, Nosanchuk JD, Vainstein MH, de Almeida Soares CM: The homeostasis of iron, copper, and Zn in paracoccidioides brasiliensis, cryptococcus neoformans var. Grubii, and cryptococcus gattii: a comparative analysis. Front Microbiol 2011, 2:49.
  • [12]Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J, Newport G, Agabian N: Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 2004, 53(5):1451-1469.
  • [13]Ramanan N, Wang Y: A high-affinity iron permease essential for Candida albicans virulence. Science 2000, 288(5468):1062-1064.
  • [14]Gancz H, Censini S, Merrell DS: Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect Immun 2006, 74(1):602-614.
  • [15]Waterman SR, Hacham M, Hu G, Zhu X, Park YD, Shin S, Panepinto J, Valyi-Nagy T, Beam C, Husain S, Singh N, Williamson PR: Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 2007, 117(3):794-802.
  • [16]Dias-Melicio LA, Calvi SA, Peraçoli MT, Soares AM: Inhibitory effect of deferoxamine on Paracoccidioides brasiliensis survival in human monocytes: reversal by holotransferrin not by apotransferrin. Rev Inst Med Trop Sao Paulo 2005, 47(5):263-266.
  • [17]Parente AF, Bailão AM, Borges CL, Parente JA, Magalhães AD, Ricart CA, Soares CM: Proteomic analysis reveals that iron availability alters the metabolic status of the pathogenic fungus Paracoccidioides brasiliensis. PLoS ONE 2011, 6(7):e22810.
  • [18]da Fonseca CA, Jesuino RS, Felipe MS, Cunha DA, Brito WA, Soares CM: Two-dimensional electrophoresis and characterization of antigens from Paracoccidioides brasiliensis. Microbes Infect 2001, 3(7):535-542.
  • [19]Borges CL, Bailão AM, Báo SN, Pereira M, Parente JA, de Almeida Soares CM: Genes potentially relevant in the parasitic phase of the fungal pathogen Paracoccidioides brasiliensis. Mycopathologia 2011, 171(1):1-9.
  • [20]Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, Winters MS, Alderete JF, de Almeida Soares CM: Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. Infect Immun 2010, 78(9):4040-4050.
  • [21]Rezende TC, Borges CL, Magalhães AD, de Sousa MV, Ricart CA, Bailão AM, Soares CM: A quantitative view of the morphological phases of Paracoccidioides brasiliensis using proteomics. J Proteomics 2011, 75(2):572-587.
  • [22]Vallejo MC, Nakayasu ES, Longo LV, Ganiko L, Lopes FG, Matsuo AL, Almeida IC, Puccia R: Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS ONE 2012, 7(6):e39463.
  • [23]Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, Ganiko L, Almeida IC, Puccia R: Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J Proteome Res 2012, 11(3):1676-1685.
  • [24]Weber SS, Parente AF, Borges CL, Parente JA, Bailão AM, de Almeida Soares CM: Analysis of the secretomes of Paracoccidioides mycelia and yeast cells. PLoS ONE 2012, 7(12):e52470.
  • [25]de Arruda Grossklaus D, Bailão AM, Vieira Rezende TC, Borges CL, de Oliveira MA, Parente JA, de Almeida Soares CM: Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect 2013, 15(5):347-364.
  • [26]da Silva JF, de Oliveira HC, Marcos CM, da Silva RA, da Costa TA, Calich VL, Almeida AM, Mendes-Giannini MJ: Paracoccidoides brasiliensis 30 kDa Adhesin: identification as a 14-3-3 protein, cloning and subcellular localization in infection models. PLoS ONE 2013, 8(4):e62533.
  • [27]Marcos CM, de Fátima da Silva J, de Oliveira HC, da Silva RA M, Mendes-Giannini MJ, Fusco-Almeida AM: Surface-expressed enolase contributes to the adhesion of Paracoccidioides brasiliensis to host cells. FEMS Yeast Res 2012, 12(5):557-570.
  • [28]Eide DJ: The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 1998, 18:441-469.
  • [29]De Freitas J, Wintz H, Kim JH, Poynton H, Fox T, Vulpe C: Yeast, a model organism for iron and copper metabolism studies. Biometals 2003, 16(1):185-197.
  • [30]Donofrio FC, Calil AC, Miranda ET, Almeida AM, Benard G, Soares CP, Veloso SN, Soares CM, Mendes Giannini MJ: Enolase from Paracoccidioides brasiliensis: isolation and identification as a fibronectin-binding protein. J Med Microbiol 2009, 58(Pt 6):706-713.
  • [31]Barbosa MS, Báo SN, Andreotti PF, de Faria FP, Felipe MS, dos Santos FL, Mendes-Giannini MJ, Soares CM: Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun 2006, 74(1):382-389.
  • [32]Carneiro LC, de Faria FP, Felipe MS, Pereira M, de Almeida Soares CM: Paracoccidioides brasiliensis presents two different cDNAs encoding homologues of the fructose 1,6-biphosphate aldolase: protein isolation, cloning of the cDNAs and genes, structural, phylogenetic, and expression analysis. Fungal Genet Biol 2005, 42(1):51-60.
  • [33]Pancholi V: Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001, 58(7):902-920.
  • [34]Carneiro CR, Postol E, Nomizo R, Reis LF, Brentani RR: Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect 2004, 6(6):604-608.
  • [35]Mundodi V, Kucknoor AS, Alderete JF: Immunogenic and plasminogen-binding surface-associated alpha-enolase of Trichomonas vaginalis. Infect Immun 2008, 76(2):523-531.
  • [36]Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S: Alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001, 40(6):1273-1287.
  • [37]Vanegas G, Quiñones W, Carrasco-López C, Concepción JL, Albericio F, Avilán L: Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol Res 2007, 101(6):1511-1516.
  • [38]Bernal D, de la Rubia JE, Carrasco-Abad AM, Toledo R, Mas-Coma S, Marcilla A: Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Lett 2004, 563(1–3):203-206.
  • [39]Coleman JL, Gebbia JA, Piesman J, Degen JL, Bugge TH, Benach JL: Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 1997, 89(7):1111-1119.
  • [40]Lähteenmäki K, Edelman S, Korhonen TK: Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 2005, 13(2):79-85.
  • [41]van Heusden GP: 14-3-3 Proteins: insights from genome-wide studies in yeast. Genomics 2009, 94(5):287-293.
  • [42]DeLille JM, Sehnke PC, Ferl RJ: The arabidopsis 14-3-3 family of signaling regulators. Plant Physiol 2001, 126(1):35-38.
  • [43]Darling DL, Yingling J, Wynshaw-Boris A: Role of 14-3-3 proteins in eukaryotic signaling and development. Curr Top Dev Biol 2005, 68:281-315.
  • [44]Obsil T, Obsilova V: Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol 2011, 22(7):663-672.
  • [45]Mendes-Giannini MJ, Andreotti PF, Vincenzi LR, da Silva JL, Lenzi HL, Benard G, Zancopé-Oliveira R, de Matos Guedes HL, Soares CP: Binding of extracellular matrix proteins to Paracoccidioides brasiliensis. Microbes Infect 2006, 8(6):1550-1559.
  • [46]Andreotti PF, Monteiro da Silva JL, Bailão AM, Soares CM, Benard G, Soares CP, Mendes-Giannini MJ: Isolation and partial characterization of a 30 kDa adhesin from Paracoccidioides brasiliensis. Microbes Infect 2005, 7(5–6):875-881.
  • [47]McCarthy JS, Wieseman M, Tropea J, Kaslow D, Abraham D, Lustigman S, Tuan R, Guderian RH, Nutman TB: Onchocerca volvulus glycolytic enzyme fructose-1,6-bisphosphate aldolase as a target for a protective immune response in humans. Infect Immun 2002, 70(2):851-858.
  • [48]Pitarch A, Sánchez M, Nombela C, Gil C: Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 2002, 1(12):967-982.
  • [49]Froissard M, Belgareh-Touzé N, Dias M, Buisson N, Camadro JM, Haguenauer-Tsapis R, Lesuisse E: Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates. Traffic 2007, 8(11):1601-1616.
  • [50]Racki WJ, Bécam AM, Nasr F, Herbert CJ: Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. EMBO J 2000, 19(17):4524-4532.
  • [51]Kuravi VK, Kurischko C, Puri M, Luca FC: Cbk1 kinase and Bck2 control MAP kinase activation and inactivation during heat shock. Mol Biol Cell 2011, 22(24):4892-4907.
  • [52]Colman-Lerner A, Chin TE, Brent R: Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 2001, 107(6):739-750.
  • [53]Gutiérrez-Escribano P, Zeidler U, Suárez MB, Bachellier-Bassi S, Clemente-Blanco A, Bonhomme J, Vázquez de Aldana CR, d’Enfert C, Correa-Bordes J: The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans. PLoS Pathog 2012, 8(5):e1002683.
  • [54]Vallejo MC, Matsuo AL, Ganiko L, Medeiros LC, Miranda K, Silva LS, Freymüller-Haapalainen E, Sinigaglia-Coimbra R, Almeida IC, Puccia R: The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-Galactosyl epitopes. Eukaryot Cell 2011, 10(3):343-351.
  • [55]Ramana J, Gupta D: FaaPred: a SVM-based prediction method for fungal adhesins and adhesin-like proteins. PLoS ONE 2010, 5(3):e9695.
  • [56]FAVA NETTO C: Contribuição para o estudo imunológico da blastomicose de Lutz (Blastomicosesulamericana). In., vol. 21. Rev. Inst. A. Lutz, São Paulo; 1961.
  • [57]McVeigh I, Morton K: Nutritional studies of Histoplasma capsulatum. Mycopathol Mycol Appl 1965, 25(3):294-308.
  • [58]Restrepo A, Jiménez BE: Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J Clin Microbiol 1980, 12(2):279-281.
  • [59]Wilcox D, Dove B, McDavid D, Greer D: UTHSCSA Image Tool 3.0. UTHSCSA, San Antonio, TX; 2002.
  • [60]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 7(72):248-254.
  • [61]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
  • [62]Neuhoff V, Arold N, Taube D, Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9(6):255-262.
  • [63]Fiorani Celedon PA, de Andrade A, Meireles KG, Gallo de Carvalho MC, Caldas DG, Moon DH, Carneiro RT, Franceschini LM, Oda S, Labate CA: Proteomic analysis of the cambial region in juvenile Eucalyptus grandis at three ages. Proteomics 2007, 7(13):2258-2274.
  文献评价指标  
  下载次数:204次 浏览次数:33次