期刊论文详细信息
BMC Genomics
Genome sequencing and analysis of Mangalica, a fatty local pig of Hungary
Endre Barta1  Ferenc Marincs1  Gábor Tóth3  Viktor Stéger1  Tibor Nagy1  János Molnár2 
[1] Agricultural Genomics and Bioinformatics Group, Agricultural Biotechnology Institute, NARIC, Gödöllő, Hungary;Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary;Hungarian Scientific Research Fund, Budapest, Hungary
关键词: Gene function;    Breed-specific SNP;    Fatty pig;    Genome sequencing;    Mangalica;   
Others  :  1140917
DOI  :  10.1186/1471-2164-15-761
 received in 2013-09-02, accepted in 2014-09-02,  发布年份 2014
PDF
【 摘 要 】

Background

Mangalicas are fatty type local/rare pig breeds with an increasing presence in the niche pork market in Hungary and in other countries. To explore their genetic resources, we have analysed data from next-generation sequencing of an individual male from each of three Mangalica breeds along with a local male Duroc pig. Structural variations, such as SNPs, INDELs and CNVs, were identified and particular genes with SNP variations were analysed with special emphasis on functions related to fat metabolism in pigs.

Results

More than 60 Gb of sequence data were generated for each of the sequenced individuals, resulting in 11× to 19× autosomal median coverage. After stringent filtering, around six million SNPs, of which approximately 10% are novel compared to the dbSNP138 database, were identified in each animal. Several hundred thousands of INDELs and about 1,000 CNV gains were also identified. The functional annotation of genes with exonic, non-synonymous SNPs, which are common in all three Mangalicas but are absent in either the reference genome or the sequenced Duroc of this study, highlighted 52 genes in lipid metabolism processes. Further analysis revealed that 41 of these genes are associated with lipid metabolic or regulatory pathways, 49 are in fat-metabolism and fatness-phenotype QTLs and, with the exception of ACACA, ANKRD23, GM2A, KIT, MOGAT2, MTTP, FASN, SGMS1, SLC27A6 and RETSAT, have not previously been associated with fat-related phenotypes.

Conclusions

Genome analysis of Mangalica breeds revealed that local/rare breeds could be a rich source of sequence variations not present in cosmopolitan/industrial breeds. The identified Mangalica variations may, therefore, be a very useful resource for future studies of agronomically important traits in pigs.

【 授权许可】

   
2014 Molnár et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325152615308.pdf 1512KB PDF download
Figure 6. 40KB Image download
Figure 5. 88KB Image download
Figure 4. 90KB Image download
Figure 3. 55KB Image download
Figure 2. 93KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Fadiel A, Anidi I, Eichenbaum KD: Farm animal genomics and informatics: an update. Nucleic Acids Res 2005, 33:6308-6318.
  • [2]Rothschild MF, Plastow GS: Impact of genomics on animal agriculture and opportunities for animal health. Trends Biotechnol 2008, 26:21-25.
  • [3]International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432:695-717.
  • [4]Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LA, Bouffard P, Burt DW, Crasta O, Crooijmans RPMA, Cooper K, Coulombe RA, De S, Delany ME, Dodgson JB, Dong JJ, Evans C, Frederickson KM, Flicek P, Florea L, Folkerts O, Groenen MAM, Harkins TT, Herrero J, Hoffmann S, Megens HJ, Jiang A, de Jong P, Kaiser P, Kim H, et al.: Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): Genome assembly and analysis. PLoS Biol 2010, 8:e1000475.
  • [5]Elsik CG, Tellam RL, Worley KC, The Bovine Genome Sequencing and Analysis Consortium: The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science 2009, 324:522-528.
  • [6]Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blocker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G, et al.: Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326:865-867.
  • [7]Archibald AL, Cockett NE, Dalrymple BP, Faraut T, Kijas JW, Maddox JF, McEwan JC, Hutton Oddy V, Raadsma HW, Wade C, Wang J, Wang W, Xun X, The International Sheep Genomics Consortium: The sheep genome reference sequence: a work in progress. Anim Genet 2010, 41:449-453.
  • [8]Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J, Chen W, Chen J, Zeng P, Hou Y, Bian C, Pan S, Li Y, Liu X, Wang W, Servin B, Sayre B, Zhu B, Sweeney D, Moore R, Nie W, Shen Y, Zhao R, Zhang G, Li J, Faraut T, et al.: Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnol 2013, 31:135-143.
  • [9]Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LAF, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, et al.: Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491:392-398.
  • [10]Canavez FC, Luche DD, Stothard P, Leite KRM, Sousa-Canavez JM, Plastow G, Meidanis J, Souza MA, Feijao P, Moore SS, Camara-Lopes LH: Genome sequence and assembly of Bos indicus. J Hered 2012, 103:342-348.
  • [11]Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian X, Lang Y, Zhou R, Wang L, Wang K, Xia J, Liao S, Pan S, Lu X, Hou H, Wang Y, Zang X, Yin Y, Ma H, Zhang J, Wang Z, et al.: The yak genome and adaptation to life at high altitude. Nat Genet 2012, 44:946-949.
  • [12]USDA: Livestock and poultry: world markets and trade. 2012. [USDA Foreign Agricultural Service]
  • [13]Chen K, Baxter T, Muir WM, Groenen MA, Schook LB: Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci 2007, 3:153-165.
  • [14]Molnár J, Tóth G, Stéger V, Zsolnai A, Jánosi A, Mohr A, Szántó-Egész R, Tóth P, Micsinai A, Rátky J, Marincs F: Mitochondrial D-loop analysis reveals low diversity in Mangalica pigs and their relationship to historical specimens. J Anim Breed Genet 2013, 130:312-320.
  • [15]Wernersson R, Schierup MH, Jørgensen FG, Gorodkin J, Panitz F, Stærfeldt HH, Christensen OF, Mailund T, Hornshøj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GKS, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L: Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 2005, 6:70. BioMed Central Full Text
  • [16]Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K: Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genom 2005, 6:251-255.
  • [17]Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB, The Swine Genome Sequencing Consortium: Pig genome sequence - analysis and publication strategy. BMC Genomics 2010, 11:438. BioMed Central Full Text
  • [18]Amaral AJ, Megens HJ, Kerstens HHD, Heuven HCM, Dibbits B, Crooijmans RPMA, den Dunnen JT, Groenen MAM: Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 2009, 10:374. BioMed Central Full Text
  • [19]Kerstens HHD, Kollers S, Kommadath A, del Rosario M, Dibbits B, Kinders SM, Crooijmans RP, Groenen MAM: Mining for single nucleotide polymorphisms in pig genome sequence data. BMC Genomics 2009, 10:4. BioMed Central Full Text
  • [20]Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009, 4:e6524.
  • [21]Zhang W, Wu W, Lin W, Zhou P, Dai L, Zhang Y, Huang J, Zhang D: Deciphering heterogeneity in pig genome assembly Sscrofa9 by isochore and isochore-like region analyses. PLoS One 2010, 5:e13303.
  • [22]Damon M, Wyszynska-Koko J, Vincent A, Hérault F, Lebret B: Comparison of muscle transcriptome between pigs with divergent meat quality phenotypes identifies genes related to muscle metabolism and structure. PLoS One 2012, 7:e33763.
  • [23]Zhao S, Hulsegge B, Harders FL, Bossers R, Keuning E, Hoekman AJW, Hoving-Bolink R, te Pas MFW: Functional analysis of inter-individual transcriptome differential expression in pig longissimus muscle. J Anim Breed Genet 2013, 130:72-78.
  • [24]Dreher F, Kamburov A, Herwig R: Construction of a pig physical interactome using sequence homology and a comprehensive reference human interactome. Evol Bioinform 2012, 8:119-126.
  • [25]Amaral AJ, Ferretti L, Megens H-J, Crooijmans RPMA, Nie H, Ramos-Onsins SE, Perez-Enciso M, Schook LB, Groenen MAM: Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One 2011, 6:e14782.
  • [26]Companion articles for the publication of the swine genome. [http://www.biomedcentral.com/series/swine/ webcite]
  • [27]Bosse M, Megens HJ, Madsen O, Paudel Y, Frantz LAF, Schook LB, Crooijmans RPMA, Groenen MAM: Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet 2012, 8:e1003100.
  • [28]Esteve-Codina A, Paudel Y, Ferretti L, Raineri E, Megens HJ, Silió L, Rodríguez MC, Groenen MAM, Ramos-Onsins SE, Pérez-Enciso M: Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genomics 2013, 14:148. BioMed Central Full Text
  • [29]Fang X, Mu Y, Huang Z, Li Y, Han L, Zhang Y, Feng Y, Chen Y, Jiang X, Zhao W, Sun X, Xiong Z, Yang L, Liu H, Fan D, Mao L, Ren L, Liu C, Wang J, Li K, Wang G, Yang S, Lai L, Zhang G, Li Y, Wang J, Bolund L, Yang H, Wang J, Feng S, Li S, Du Y: The sequence and analysis of a Chinese pig genome. GigaScience 2012, 1:16. BioMed Central Full Text
  • [30]Hall SJG, Bradley DG: Conserving livestock breed biodiversity. Trends Ecol Evol 1995, 10:267-270.
  • [31]Szabó A, Viski A, Egyházi Z, Házas Z, Horn P, Romvári R: Comparison of Mangalica and Hungarian Large White pigs at identical bodyweight: 1 Backfat histology. Arch Tierzucht 2010, 53:141-146.
  • [32]Switonski M, Stachowiak M, Cieslak J, Bartz M, Grzes M: Genetics of fat tissue accumulation in pigs: a comparative approach. J Appl Genet 2010, 51:153-168.
  • [33]Zsolnai A, Radnóczy L, Fésüs L, Anton I: Do Mangalica pigs of different colours really belong to different breeds? Arch Tierzucht 2006, 49:477-483.
  • [34]Egerszegi I, Schneider F, Rátky J, Soós F, Solti L, Manabe N, Brüssow KP: Comparison of luteinizing hormone and steroid hormone secretion during the peri- and post-ovulatory periods in Mangalica and Landrace gilts. J Reprod Develop 2003, 49:291-296.
  • [35]Rátky J, Brüssow KP, Egerszegi I, Torner H, Schneider F, Solti L, Manabe N: Comparison of follicular and oocyte development and reproductive hormone secretion during the ovulatory period in Hungarian native breed, Mangalica, and Landrace gilts. J Reprod Develop 2005, 51:427-432.
  • [36]Egerszegi I, Hazeleger W, Rátky J, Sarlós P, Kemp B, Bouwman E, Solti L, Brüssow KP: Superovulatory ovarian response in Mangalica gilts is not influenced by feeding level. Reprod Domest Anim 2007, 42:441-444.
  • [37]Brüssow KP, Schneider F, Tuchscherer A, Egerszegi I, Rátky J: Comparison of luteinizing hormone, leptin and progesterone levels in the systemic circulation (Vena jugularis) and near the ovarian circulation (Vena cava caudalis) during the oestrous cycle in Mangalica and Landrace gilts. J Reprod Develop 2008, 54:431-438.
  • [38]Sarlós P, Egerszegi I, Nagy S, Fébel H, Rátky J: Reproductive function of Hungarian Mangalica boars: effect of seasons. Acta Vet Hung 2011, 59:257-267.
  • [39]Drögemüller C, Giese A, Martins-Wess F, Wiedemann S, Andersson L, Brenig B, Fries R, Leeb T: The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mamm Genome 2006, 17:58-66.
  • [40]Marincs F, Molnár J, Tóth G, Stéger V, Barta E: Introgression and isolation contributed to the development of Hungarian Mangalica pigs from a particular European ancient bloodline. Genet Sel Evol 2013, 45:22. BioMed Central Full Text
  • [41]Ursing BM, Arnason U: The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 1998, 47:302-306.
  • [42]Pelak K, Shianna KV, Ge D, Maia JM, Zhu M, Smith JP, Cirulli ET, Fellay J, Dickson SP, Gumbs CE, Heinzen EL, Need AC, Ruzzo EK, Singh A, Campbell CR, Hong LK, Lornsen KA, McKenzie AM, Sobreira NLM, Hoover-Fong JE, Milner JD, Ottman R, Haynes BF, Goedert JJ, Goldstein DB: The Characterization of Twenty Sequenced Human Genomes. PLoS Genet 2010, 6:e1001111.
  • [43]Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, Axelrod N, Busam DA, Strausberg RL, Venter JC: Genetic Variation in an Individual Human Exome. PLoS Genet 2008, 4:e1000160.
  • [44]Paudel Y, Madsen O, Megens HJ, Frantz LAF, Bosse M, Bastiaansen JWM, Crooijmans RPMA, Groenen MAM: Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics 2013, 14:449. BioMed Central Full Text
  • [45]Mi H, Muruganujan A, Thomas PD: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acid Res 2013, 41:D377-D386.
  • [46]Hu ZL, Park CA, Wu XL, Reecy JM: Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 2013, 41:D871-D879.
  • [47]Maier T, Jenni S, Ban N: Architecture of Mammalian Fatty Acid Synthase at 4.5 Å Resolution. Science 2006, 311:1258-1262.
  • [48]Gallardo D, Amills M, Quintanilla R, Pena RN: Mapping and tissue mRNA expression analysis of the pig solute carrier 27A (SLC27A) multigene family. Gene 2013, 515:220-223.
  • [49]Mandard S, Patsouris D: Nuclear Control of the Inflammatory Response in Mammals by Peroxisome Proliferator-Activated Receptors. PPAR Res 2013, Article ID 613864.
  • [50]Muñoz G, Alves E, Fernández A, Óvilo C, Barragán C, Estellé J, Quintanilla R, Folch JM, Silió L, Rodríguez MC, Fernández AI: QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. Anim Genet 2007, 38:639-646.
  • [51]Cánovas A, Quintanilla R, Amills M, Pena RN: Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits. BMC Genomics 2010, 11:372. BioMed Central Full Text
  • [52]Stachowiak M, Nowacka-Woszuk J, Szydlowski M, Switonski M: The ACACA and SREBF1 genes are promising markers for pig carcass and performance traits, but not for fatty acid content in the longissimus dorsi muscle and adipose tissue. Meat Sci 2013, 95:64-71.
  • [53]Estellé J, Fernández AI, Pérez-Enciso M, Fernández A, Rodríguez C, Sánchez A, Noguera JL, Folch JM: A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Anim Genet 2009, 40:813-820.
  • [54]Corominas J, Ramayo-Caldas Y, Puig-Oliveras A, Estellé J, Castelló A, Alves E, Pena RN, Ballester M, Folch JM: Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genomics 2013, 14:843. BioMed Central Full Text
  • [55]Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF: 'New' hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 2005, 1:309-322.
  • [56]Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP: Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000, 288:2379-2381.
  • [57]Maier T, Leibundgut M, Ban N: The Crystal Structure of a Mammalian Fatty Acid Synthase. Science 2008, 321:1315-1322.
  • [58]Szabó A, Horn P, Romvári R, Házas Z, Fébel H: Comparison of Mangalica and Hungarian Large White pigs at identical bodyweight: 2. Fatty acid regiodistribution analysis of the triacylglycerols. Arch Tierzucht 2010, 53:147-161.
  • [59]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transformation. Bioinformatics 2010, 26:589-595.
  • [60]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, The 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [61]DePristo MA, Banks E, Poplin RV, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011, 43:491-498.
  • [62]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [63]Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, Kitzman JO, Baker C, Malig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE: Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet 2009, 41:1061-1067.
  • [64]Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010, 38:e164.
  • [65]Kasprzyk A: BioMart: driving a paradigm change in biological data management. Database 2011, bar049.
  • [66]Oliveros JC: VENNY: An interactive tool for comparing lists with Venn Diagrams. 2007. [http://bioinfogp.cnb.csic.es/tools/venny/index.html webcite]
  • [67]Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD: An information-intensive approach to the molecular pharmacology of cancer. Science 1997, 275:343-349.
  文献评价指标  
  下载次数:28次 浏览次数:13次