期刊论文详细信息
BMC Complementary and Alternative Medicine
Inhibitory effects of Stemona tuberosa on lung inflammation in a subacute cigarette smoke-induced mouse model
Hyunsu Bae4  Eun-Kyoung Seo3  Young Pyo Jang1  Eun Young Chung1  Yun-Seo Kil3  Soojin Park4  Kyung-Hwa Jung4  Hyeonhoon Lee2 
[1]Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, #1 Hoeki-dongDongdaemoon-gu, Seoul 130-701, Republic of Korea
[2]Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, #1 Hoeki-dongDongdaemoon-gu, Seoul 130-701, Republic of Korea
[3]Global Top5 Research Program, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
[4]Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoeki-dongDongdaemoon-gu, Seoul 130-701, Republic of Korea
关键词: IL-6;    TNF-α;    COPD;    BALF;    Stemona tuberosa;    CS;   
Others  :  1084507
DOI  :  10.1186/1472-6882-14-513
 received in 2014-03-26, accepted in 2014-12-16,  发布年份 2014
PDF
【 摘 要 】

Background

Stemona tuberosa has long been used in Korean and Chinese medicine to ameliorate various lung diseases such as pneumonia and bronchitis. However, it has not yet been proven that Stemona tuberosa has positive effects on lung inflammation.

Methods

Stemona tuberosa extract (ST) was orally administered to C57BL/6 mice 2 hr before exposure to CS for 2 weeks. Twenty-four hours after the last CS exposure, mice were sacrificed to investigate the changes in the expression of cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), chemokines such as keratinocyte-derived chemokine (KC) and inflammatory cells such as macrophages, neutrophils, and lymphocytes from bronchoalveolar lavage fluid (BALF). Furthermore, we compared the effect of ST on lung tissue morphology between the fresh air, CS exposure, and ST treatment groups.

Results

ST significantly decreased the numbers of total cells, macrophages, neutrophils, and lymphocytes in the BALF of mice that were exposed to CS. Additionally, ST reduced the levels of cytokines (TNF-α, IL-6) and the tested chemokine (KC) in BALF, as measured by enzyme-linked immunosorbent assay (ELISA). We also estimated the mean alveolar airspace (MAA) via morphometric analysis of lung tissues stained with hematoxylin and eosin (H&E). We found that ST inhibited the alveolar airspace enlargement induced by CS exposure. Furthermore, we observed that the lung tissues of mice treated with ST showed ameliorated epithelial hyperplasia of the bronchioles compared with those of mice exposed only to CS.

Conclusions

These results indicate that Stemona tuberosa has significant effects on lung inflammation in a subacute CS-induced mouse model. According to these outcomes, Stemona tuberosa may represent a novel therapeutic herb for the treatment of lung diseases including COPD.

【 授权许可】

   
2014 Lee et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150113162216586.pdf 1563KB PDF download
Figure 6. 111KB Image download
Figure 5. 177KB Image download
Figure 1. 19KB Image download
Figure 3. 83KB Image download
Figure 2. 62KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 1.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Sopori M: Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002, 2(5):372-377.
  • [2]Vestbo J, Sorensen T, Lange P, Brix A, Torre P, Viskum K: Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 1999, 353(9167):1819-1823.
  • [3]Nakamura Y, Romberger DJ, Tate L, Ertl RF, Kawamoto M, Adachi Y, Mio T, Sisson JH, Spurzem JR, Rennard SI: Cigarette smoke inhibits lung fibroblast proliferation and chemotaxis. Am J Respir Crit Care Med 1995, 151(5):1497-1503.
  • [4]Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I: Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004, 31(6):633-642.
  • [5]Randerath E, Miller RH, Mittal D, Avitts TA, Dunsford HA, Randerath K: Covalent DNA damage in tissues of cigarette smokers as determined by 32P-postlabeling assay. J Natl Cancer Inst 1989, 81(5):341-347.
  • [6]Kier LD, Yamasaki E, Ames BN: Detection of mutagenic activity in cigarette smoke condensates. Proc Natl Acad Sci U S A 1974, 71(10):4159-4163.
  • [7]Barnes PJ: The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2009, 41(6):631-638.
  • [8]Chung KF: Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 2001, 34:50s-59s.
  • [9]Sin DD, Anthonisen NR, Soriano JB, Agusti AG: Mortality in COPD: Role of comorbidities. Eur Respir J 2006, 28(6):1245-1257.
  • [10]Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R: Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease GOLD Executive Summary. Am J Respir Crit Care Med 2013, 187(4):347-365.
  • [11]Buenestado A, Grassin-Delyle S, Guitard F, Naline E, Faisy C, Israel-Biet D, Sage E, Bellamy JF, Tenor H, Devillier P: Roflumilast inhibits the release of chemokines and TNF-alpha from human lung macrophages stimulated with lipopolysaccharide. Br J Pharmacol 2012, 165(6):1877-1890.
  • [12]Field SK: Roflumilast, a Novel Phosphodiesterase 4 Inhibitor, for COPD Patients with a History of Exacerbations. Clin Med Insights Circ Respir Pulm Med 2011, 5:57-70.
  • [13]Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G: Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 2005, 172(7):848-853.
  • [14]Rabe KF: Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol 2011, 163(1):53-67.
  • [15]Zheng J, Yang J, Zhou X, Zhao L, Hui F, Wang H, Bai C, Chen P, Li H, Kang J, Brose M, Richard F, Goehring UM, Zhong N: Roflumilast for the treatment of COPD in an Asian population: a randomized, double-blind, parallel-group study. Chest 2014, 145(1):44-52.
  • [16]Lin LG, Yang XZ, Tang CP, Ke CQ, Zhang JB, Ye Y: Antibacterial stilbenoids from the roots of Stemona tuberosa. Phytochemistry 2008, 69(2):457-463.
  • [17]Zhang T, Zhang YZ, Tao JS: Antibacterial constituents from Stemona sessilifolia. J Asian Nat Prod Res 2007, 9(3–5):479-485.
  • [18]Zhang YZ, Xu GB, Zhang T: Antifungal stilbenoids from Stemona japonica. J Asian Nat Prod Res 2008, 10(7–8):639-644.
  • [19]Xu YT, Shaw PC, Jiang RW, Hon PM, Chan YM, But PP: Antitussive and central respiratory depressant effects of Stemona tuberosa. J Ethnopharmacol 2010, 128(3):679-684.
  • [20]Xu YT, Hon PM, Jiang RW, Cheng L, Li SH, Chan YP, Xu HX, Shaw PC, But PPH: Antitussive effects of Stemona tuberosa with different chemical profiles. J Ethnopharmacol 2006, 108(1):46-53.
  • [21]Jung KH, Haam KK, Park S, Kim Y, Lee SR, Lee G, Kim M, Hong M, Shin M, Jung S, Bae H: The standardized herbal formula, PM014, ameliorated cigarette smoke-induced lung inflammation in a murine model of chronic obstructive pulmonary disease. BMC Complement Altern Med 2013, 13:219. BioMed Central Full Text
  • [22]Stebbins KJ, Broadhead AR, Baccei CS, Scott JM, Truong YP, Coate H, Stock NS, Santini AM, Fagan P, Prodanovich P, Bain G, Stearns BA, King CD, Hutchinson JH, Prasit P, Evans JF, Lorrain DS: Pharmacological blockade of the DP2 receptor inhibits cigarette smoke-induced inflammation, mucus cell metaplasia, and epithelial hyperplasia in the mouse lung. J Pharmacol Exp Ther 2010, 332(3):764-775.
  • [23]Huvenne W, Perez-Novo CA, Derycke L, De Ruyck N, Krysko O, Maes T, Pauwels N, Robays L, Bracke KR, Joos G, Brusselle G, Bachert C: Different regulation of cigarette smoke induced inflammation in upper versus lower airways. Respir Res 2010, 11:100. BioMed Central Full Text
  • [24]Jiang RW, Hon PM, Zhou Y, Chan YM, Xu YT, Xu HX, Greger H, Shaw PC, But PP: Alkaloids and chemical diversity of Stemona tuberosa. J Nat Prod 2006, 69(5):749-754.
  • [25]Gualano RC, Hansen MJ, Vlahos R, Jones JE, Park-Jones RA, Deliyannis G, Turner SJ, Duca KA, Anderson GP: Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice. Respir Res 2008, 9:53. BioMed Central Full Text
  • [26]Wright JL, Hobson J, Wiggs BR, Hogg JC: Comparison of inflammatory cells in bronchoalveolar fluid with those in the lumen and tissue peripheral airways and alveolar airspace. Lung 1988, 166(2):75-83.
  • [27]Demirjian L, Abboud RT, Li H, Duronio V: Acute effect of cigarette smoke on TNF-alpha release by macrophages mediated through the erk1/2 pathway. Biochim Biophys Acta 2006, 1762(6):592-597.
  • [28]Mortaz E, Kraneveld AD, Smit JJ, Kool M, Lambrecht BN, Kunkel SL, Lukacs NW, Nijkamp FP, Folkerts G: Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. Plos One 2009, 4(3):e4946.
  • [29]Soliman DM, Twigg HL 3rd: Cigarette smoking decreases bioactive interleukin-6 secretion by alveolar macrophages. Am J Physiol 1992, 263(4 Pt 1):L471-478.
  • [30]Morrison D, Strieter RM, Donnelly SC, Burdick MD, Kunkel SL, MacNee W: Neutrophil chemokines in bronchoalveolar lavage fluid and leukocyte-conditioned medium from nonsmokers and smokers. Eur Respir J 1998, 12(5):1067-1072.
  • [31]Traves SL, Culpitt SV, Russell RE, Barnes PJ, Donnelly LE: Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax 2002, 57(7):590-595.
  • [32]Fortin M, D'Anjou H, Higgins ME, Gougeon J, Aube P, Moktefi K, Mouissi S, Seguin S, Seguin R, Renzi PM, Paquet L, Ferrari N: A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir Res 2009, 10:39. BioMed Central Full Text
  • [33]Hunninghake GW, Crystal RG: Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 1983, 128(5):833-838.
  • [34]Hoenderdos K, Condliffe A: The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2013, 48(5):531-539.
  • [35]Noguera A, Batle S, Miralles C, Iglesias J, Busquets X, MacNee W, Agusti AG: Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax 2001, 56(6):432-437.
  • [36]Hogg JC, Walker BA: Polymorphonuclear leucocyte traffic in lung inflammation. Thorax 1995, 50(8):819-820.
  • [37]Pettersen CA, Adler KB: Airways inflammation and COPD: epithelial-neutrophil interactions. Chest 2002, 121(5 Suppl):142S-150S.
  • [38]Farkas L, Farkas D, Warburton D, Gauldie J, Shi W, Stampfli MR, Voelkel NF, Kolb M: Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice. Am J Physiol Lung Cell Mol Physiol 2011, 301(4):L391-401.
  • [39]Rahman I, MacNee W: Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 1996, 21(5):669-681.
  • [40]Rahman I, Biswas SK, Kode A: Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 2006, 533(1–3):222-239.
  • [41]Imai K, Mercer BA, Schulman LL, Sonett JR, D'Armiento JM: Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 2005, 25(2):250-258.
  • [42]Aoshiba K, Yokohori N, Nagai A: Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol 2003, 28(5):555-562.
  • [43]Goncharova EA, Goncharov DA, Fehrenbach M, Khavin I, Ducka B, Hino O, Colby TV, Merrilees MJ, Haczku A, Albelda SM, Krymskaya VP: Prevention of alveolar destruction and airspace enlargement in a mouse model of pulmonary lymphangioleiomyomatosis (LAM). Sci Transl Med 2012, 4(154):154ra134.
  • [44]Hsia CC, Hyde DM, Ochs M, Weibel ER: An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010, 181(4):394-418.
  • [45]Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, Maestrelli P, Ciaccia A, Fabbri LM: CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998, 157(3 Pt 1):822-826.
  • [46]Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, Maestrelli P, Cavallesco G, Papi A, Fabbri LM: Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med 2000, 161(3 Pt 1):1016-1021.
  • [47]Vlahovic G, Russell ML, Mercer RR, Crapo JD: Cellular and connective tissue changes in alveolar septal walls in emphysema. Am J Respir Crit Care Med 1999, 160(6):2086-2092.
  • [48]Zhu Z, Lee CG, Zheng T, Chupp G, Wang J, Homer RJ, Noble PW, Hamid Q, Elias JA: Airway inflammation and remodeling in asthma. Lessons from interleukin 11 and interleukin 13 transgenic mice. Am J Respir Crit Care Med 2001, 164(10 Pt 2):S67-70.
  • [49]Luppi F, Aarbiou J, van Wetering S, Rahman I, de Boer WI, Rabe KF, Hiemstra PS: Effects of cigarette smoke condensate on proliferation and wound closure of bronchial epithelial cells in vitro: role of glutathione. Respir Res 2005, 6:140. BioMed Central Full Text
  • [50]Jeffery PK, Ayers M, Rogers D: The mechanisms and control of bronchial mucous cell hyperplasia. Adv Exp Med Biol 1982, 144:399-409.
  • [51]Wright JL, Cosio M, Churg A: Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008, 295(1):L1-15.
  • [52]Tan YF, Zhang W, Yang L, Jiang SP: The effect of formoterol on airway goblet cell hyperplasia and protein Muc5ac expression in asthmatic mice. Eur Rev Med Pharmacol Sci 2011, 15(7):743-750.
  • [53]Lee E, Yun N, Jang YP, Kim J: Lilium lancifolium Thunb. extract attenuates pulmonary inflammation and air space enlargement in a cigarette smoke-exposed mouse model. J Ethnopharmacol 2013, 149(1):148-156.
  • [54]Lee YC, Lee JC, Seo YB, Kook YB: Liriopis tuber inhibit OVA-induced airway inflammation and bronchial hyperresponsiveness in murine model of asthma. J Ethnopharmacol 2005, 101(1–3):144-152.
  • [55]Do JS, Hwang JK, Seo HJ, Woo WH, Nam SY: Antiasthmatic activity and selective inhibition of type 2 helper T cell response by aqueous extract of semen armeniacae amarum. Immunopharmacol Immunotoxicol 2006, 28(2):213-225.
  • [56]Rai RV, Rajesh PS, Kim H: Medicinal use of Coscinium fenestratum (Gaertn.) Colebr.: an short review. Orient Pharm Exp Med 2013, 13(1):1-9.
  • [57]Valenca SS, Castro P, Pimenta WA, Lanzetti M, Silva SV, Barja-Fidalgo C, Koatz VL, Porto LC: Light cigarette smoke-induced emphysema and NFkappaB activation in mouse lung. Int J Exp Pathol 2006, 87(5):373-381.
  • [58]Sethi JM, Rochester CL: Smoking and chronic obstructive pulmonary disease. Clin Chest Med 2000, 21(1):67-86. viii
  • [59]Tetley TD: New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax 1993, 48(5):560-565.
  • [60]Shapiro SD: The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999, 160(5 Pt 2):S29-32.
  • [61]D'Hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA: Time course of cigarette smoke-induced pulmonary inflammation in mice. Eur Respir J 2005, 26(2):204-213.
  • [62]Molet S, Belleguic C, Lena H, Germain N, Bertrand CP, Shapiro SD, Planquois JM, Delaval P, Lagente V: Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflamm Res 2005, 54(1):31-36.
  • [63]Ramos C, Cisneros J, Gonzalez-Avila G, Becerril C, Ruiz V, Montano M: Increase of matrix metalloproteinases in woodsmoke-induced lung emphysema in guinea pigs. Inhal Toxicol 2009, 21(2):119-132.
  • [64]Barnes PJ: Th2 cytokines and asthma: an introduction. Respir Res 2001, 2(2):64-65. BioMed Central Full Text
  • [65]Freeman CM, Han MK, Martinez FJ, Murray S, Liu LX, Chensue SW, Polak TJ, Sonstein J, Todt JC, Ames TM, Arenberg DA, Meldrum CA, Getty C, McCloskey L, Curtis JL: Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15. J Immunol 2010, 184(11):6504-6513.
  • [66]Majo J, Ghezzo H, Cosio MG: Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001, 17(5):946-953.
  • [67]Motz GT, Eppert BL, Wesselkamper SC, Flury JL, Borchers MT: Chronic cigarette smoke exposure generates pathogenic T cells capable of driving COPD-like disease in Rag2-/- mice. Am J Respir Crit Care Med 2010, 181(11):1223-1233.
  • [68]Brandsma CA, Hylkema MN, Luinge MA, Geerlings M, Klok PA, Cassee FR, Timens W, Postma DS, Kerstjens HA: Nitrogen dioxide exposure attenuates cigarette smoke-induced cytokine production in mice. Inhal Toxicol 2008, 20(2):183-189.
  • [69]McGrath-Morrow SA, Lauer T, Collaco JM, Yee M, O'Reilly M, Mitzner W, Neptune E, Wise R, Biswal S: Neonatal hyperoxia contributes additively to cigarette smoke-induced chronic obstructive pulmonary disease changes in adult mice. Am J Respir Cell Mol Biol 2011, 45(3):610-616.
  • [70]Gessner C, Scheibe R, Wotzel M, Hammerschmidt S, Kuhn H, Engelmann L, Hoheisel G, Gillissen A, Sack U, Wirtz H: Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir Med 2005, 99(10):1229-1240.
  • [71]Chung KF: Cytokines as targets in chronic obstructive pulmonary disease. Curr Drug Targets 2006, 7(6):675-681.
  • [72]Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL: Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2004, 170(5):492-498.
  • [73]Barnes PJ, Celli BR: Systemic manifestations and comorbidities of COPD. Eur Respir J 2009, 33(5):1165-1185.
  • [74]Bucchioni E, Kharitonov SA, Allegra L, Barnes PJ: High levels of interleukin-6 in the exhaled breath condensate of patients with COPD. Respir Med 2003, 97(12):1299-1302.
  • [75]Bartalesi B, Cavarra E, Fineschi S, Lucattelli M, Lunghi B, Martorana PA, Lungarella G: Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur Respir J 2005, 25(1):15-22.
  • [76]Itoh M, Tsuji T, Nakamura H, Yamaguchi K, Fuchikami J, Takahashi M, Morozumi Y, Aoshiba K: Systemic effects of acute cigarette smoke exposure in mice. Inhal Toxicol 2014, 26(8):464-473.
  • [77]Boskabady MH, Gholami Mhtaj L: Effect of the Zataria multiflora on Systemic Inflammation of Experimental Animals Model of COPD. Biomed Res Int 2014, 2014:802189.
  • [78]Zhou Y, Jiang RW, Hon PM, Xu YT, Chan YM, Chan TW, Xu HX, Ding LS, But PP, Shaw PC: Analyses of Stemona alkaloids in Stemona tuberosa by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2006, 20(6):1030-1038.
  • [79]Shinozaki H, Ishida M: Inhibitory actions of tuberostemonine on the excitatory transmission at the crayfish neuromuscular junction. Brain Res 1985, 334(1):33-40.
  • [80]Tang CP, Chen T, Velten R, Jeschke P, Ebbinghaus-Kintscher U, Geibel S, Ye Y: Alkaloids from stems and leaves of Stemona japonica and their insecticidal activities. J Nat Prod 2008, 71(1):112-116.
  • [81]Lai DH, Yang ZD, Xue WW, Sheng J, Shi Y, Yao XJ: Isolation, characterization and acetylcholinesterase inhibitory activity of alkaloids from roots of Stemona sessilifolia. Fitoterapia 2013, 89:257-264.
  • [82]Yang XZ, Zhu JY, Tang CP, Ke CQ, Lin G, Cheng TY, Rudd JA, Ye Y: Alkaloids from roots of Stemona sessilifolia and their antitussive activities. Planta Med 2009, 75(2):174-177.
  • [83]Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM: Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007, 176(2):154-161.
  文献评价指标  
  下载次数:59次 浏览次数:23次