期刊论文详细信息
BMC Microbiology
Role of AcsR in expression of the acetyl-CoA synthetase gene in Vibrio vulnificus
Soon-Jung Park1  Kyu-Ho Lee2  Hyeon Jin Noh1  Hye Yeon Lee1  Juri Kim1  Min Jung Kim1 
[1] Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, South Korea;Department of Life Science, Sogang University, Seoul 121-742, South Korea
关键词: VarS/VarA;    AcsR;    Acetyl-CoA synthetase;    Acetate metabolism;    Vibrio vulnificus;   
Others  :  1212067
DOI  :  10.1186/s12866-015-0418-4
 received in 2014-07-18, accepted in 2015-03-25,  发布年份 2015
PDF
【 摘 要 】

Background

VarS/VarA is one of the global factors regulating diverse aspects of the metabolism and virulence of bacteria including pathogenic Vibrio spp. An experiment to identify the VarS/VarA-regulon in V. vulnificus revealed that a putative LuxR-type transcriptional regulator was down-regulated in ΔvarA mutant. To investigate the roles of this regulatory cascade, the target gene regulated by a LuxR-regulator was identified and its expression was characterized.

Results

Transcriptomic analysis of the mutant deficient in this LuxR-type regulator showed that the acsA gene encoding acetyl-CoA synthetase was down-regulated. Thus, this regulator was named AcsR for “regulator of acetyl-CoA synthetase”. A putative histidine kinase gene, acsS, was located five ORFs downstream of the acsR gene. Expression of an acsA::luxAB transcriptional fusion was decreased in both ΔacsR and ΔacsS mutants. Similar to a ΔacsA mutant, strains carrying deletions either in acsR or acsS grew slowly than wild type in a minimal medium with acetate as a sole carbon source. Growth defect of the ΔacsR strain in acetate-minimal medium was restored by complementation. To investigate if AcsR directly regulates acsA expression, in vitro-gel shift assays were performed using the recombinant AcsR and the regulatory region of the acsA gene, showing that AcsR specifically bound the upstream region of the acsA ORF.

Conclusion

This study indicates that the VarS/VarA system plays a role in V. vulnificus metabolism via regulating AcsR, which in turn controls acetate metabolism by activating the transcription of the acetyl-CoA synthetase gene.

【 授权许可】

   
2015 Kim et al.; licensee BioMed Central .

【 预 览 】
附件列表
Files Size Format View
20150613021119503.pdf 1348KB PDF download
Figure 7. 34KB Image download
Figure 6. 71KB Image download
Figure 5. 40KB Image download
Figure 4. 14KB Image download
Figure 1. 53KB Image download
Figure 2. 29KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 1.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Strom MS, Paranjpye RN. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2000; 2:177-88.
  • [2]Park NY, Lee JH, Kim MW, Jeong HG, Lee BC, Kim TS et al.. Identification of the Vibrio vulnificus wbpP gene and evaluation of its role in virulence. Infect Immun. 2006; 74:721-8.
  • [3]Wright AC, Morris JG, Maneval DR, Richardson K, Kaper JB. Cloning of the cytotoxin-hemolysin gene of Vibrio vulnificus. Infect Immun. 1985; 50:922-4.
  • [4]Kim YR, Lee SE, Kook H, Yeom JA, Na HS, Kim SY et al.. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol. 2008; 10:848-62.
  • [5]Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS et al.. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol. 2007; 45:146-52.
  • [6]Miyoshi S, Shinoda S. Microbial metalloproteases and pathogenesis. Microbes Infect. 2000; 2:91-8.
  • [7]Bahrani K, Oliver JD. Studies on the lipopolysaccharide of virulent and avirulent strains of Vibrio vulnificus. Biochem Cell Biol. 1990; 68:547-51.
  • [8]Testa J, Daniel LW, Kreger AS. Extracellular phospholipase A2 and lysophospholipase produced by Vibrio vulnificus. Infect Immun. 1984; 45:458-63.
  • [9]Wright AC, Simpson LM, Oliver JD, Morris JG. Role of iron in the pathogenesis of Vibrio vulnificus. Infect Immun. 1981; 34:503-7.
  • [10]Kim YR, Rhee JH. Flagellar basal body flg operon as a virulence determinant of Vibrio vulnificus. Biochem Biophys Res Commun. 2003; 304:405-10.
  • [11]Lee J, Rho JB, Park K, Kim CB, Han Y, Choi SH et al.. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun. 2004; 72:4905-10.
  • [12]Lee KJ, Jeong CS, An YJ, Lee HJ, Park SJ, Seok YJ et al.. FrsA functions as a cofactor-independent decarboxylase to control metabolic flux. Nat Chem Biol. 2011; 7:434-6.
  • [13]Wong SM, Carroll PA, Rahme LG, Asubel FM, Calderwood SB. Modulation of expression of the ToxR regulon in Vibrio cholera by a member of the two component family of response regulators. Infect Immun. 1998; 66:5854-61.
  • [14]Pernestig AK, Melefors O, Georgellis D. Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem. 2001; 276:225-31.
  • [15]Altier C, Suyemoto M, Ruiz AI, Burnham KD, Maurer R. Characterization of two novel regulatory genes affecting salmonella invasion gene expression. Mol Microbiol. 2000; 35:635-46.
  • [16]Heebs S, Haas D. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact. 2001; 14:1351-63.
  • [17]Molofsky AB, Swanson MS. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol. 2004; 53:29-40.
  • [18]Lapouge K, Schubert M, Allain FHT, Haas D. Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behavior. Mol Microbiol. 2008; 67:241-53.
  • [19]Seyell E, Melderen LV. The ribonucleoprotein Csr network. Int J Mol Sci. 2013; 14:22117-31.
  • [20]Timmermans J, Van Melderen L. Post-translational global regulator by CsrA in bacteria. Cell Mol Life Sci. 2010; 67:2897-908.
  • [21]Jang J, Jung KT, Yoo CK, Rhie GE. Regulation of hemagglutinin/protease expression by the VarS/VarA-CsrA/B/C/D system in Vibrio cholerae. Microb Pathog. 2010; 48:245-50.
  • [22]Jang J, Jung KT, Park J, Yoo CK, Rhie GE. The Vibrio cholerae VarS/VarA two-component system controls the expression of virulence proteins through ToxT regulation. Microbiology. 2011; 157:1466-73.
  • [23]Tsou AM, Liu Z, Cai T, Zhu J. The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. Microbiology. 2011; 157:1620-8.
  • [24]Lenz DH, Miller MB, Zhu J, Kulkami RV, Bassler BL. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol. 2005; 58:1186-202.
  • [25]Gauthier JD, Jones MK, Thiaville P, Joseph JL, Swain RA, Krediet CJ et al.. Role of GacA in virulence of the Vibrio vulnificus. Microbiology. 2010; 156:3722-33.
  • [26]Jones MK, Warner EB, Oliver JD. csrA inhibits the formation of biofilms by Vibrio vulnificus. Appl Environ Microbiol. 2008; 74:7064-6.
  • [27]Brown TDK, Jones-Mortimer MC, Kornberg HL. The enzymatic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol. 1977; 102:327-36.
  • [28]Tatusov RL, Koonin EV, Lipman DJ. A genomic prospective on protein families. Science. 1997; 278:631-7.
  • [29]Okamura-Ikeda K, Ohmura Y, Fujiwara K, Motokawa Y. Cloning and nucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system. Eur J Biochem. 1993; 216:539-48.
  • [30]Jitprasutwit S, Ong C, Juntawieng N, Ooi WF, Hemsley CM, Vattanaviboon P et al.. Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of sigma E under oxidative stress conditions. BMC Genomics. 2014; 15:787. BioMed Central Full Text
  • [31]Noor R, Murata M, Nagamitsu H, Klein G, Raina S, Yamada M. Dissection of sigma (E)-dependent cell lysis in Escherichia coli: roles of RpoE regulators RseA, RseB and periplasmic folding catalyst PpiD. Genes Cells. 2009; 14:885-99.
  • [32]Lin JW, Lu HC, Chen HY, Weng SF. The pkl gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi. Biochem Biophys Res Commun. 1997; 239:228-34.
  • [33]Daddaoua A, Krell T, Ramos JL. Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem. 2009; 284:21360-8.
  • [34]Miller PF, Gambino LF, Sulavik MC, Gracheck SJ. Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother. 1994; 38:1773-9.
  • [35]McDermott PF, McMurry LM, Podglajen I, Dzink-Fox JL, Schnieders T, Draper MP et al.. The marC gene of Escherichia coli is not involved in multiple antibiotic resistance. Antimicrob Agents Chemother. 2008; 52:382-3.
  • [36]Talavera MA, DeLa Cruz EM. Equilibrium and kinetic analysis of nucleotide binding to the DEAD-box RNA helicase DbpA. Biochemistry. 2005; 44:959-70.
  • [37]Ye L, Zheng X, Zheng H. Effect of sypQ gene on poly-N-acetylglucosamine biosynthesis in Vibrio parahaemolyticus and its role in infection process. Glycobiology. 2014; 24:351-8.
  • [38]Douzi B, Spinelli S, Blangy S, Roussel A, Durand E, Brunet YR et al.. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS One. 2014; 9: Article ID e86918
  • [39]Natale AM, Duplantis JL, Piasta KN, Falke JJ. Structure, function, and on-off switching of a core unit contact between CheA kinase and CheW adaptor protein in the bacterial chemosensory array: a disulfide mapping and mutagenesis study. Biochemistry. 2013; 52:7753-65.
  • [40]Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, Xu Z et al.. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet. 2011; 7: Article ID e1002385
  • [41]Lee HJ, Park SJ, Choi SH, Lee KH. Vibrio vulnificus rpoS expression is repressed by direct binding of cAMP-cAMP receptor protein complex to its two promoter regions. J Biol Chem. 2008; 283:30438-50.
  • [42]Starai VJ, Escalante-Semerena JC. Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci. 2004; 61:2020-30.
  • [43]Kumar S, Tishel R, Eisenbach M, Wolfe AJ. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol. 1995; 177:2878-86.
  • [44]Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005; 69:12-50.
  • [45]Kretzschmar U, Schobert M, Gorisch H. The Pseudomonas aeruginosa acsA gene, encoding an acetyl-CoA synthetase, is essential for growth on ethanol. Microbiology. 2001; 147:2671-7.
  • [46]Kretzschmar U, Khodaverdi, Adrian L. Transcriptional regulation of the acetyl-CoA synthetase gene acsA in Pseudomonas aeruginosa. Arch Microbiol. 2010; 192:685-90.
  • [47]Studer SV, Mandel MJ, Ruby EG. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J Bacteriol. 2008; 190:5915-23.
  • [48]Castano-Cerezo S, Bernal V, Blanco-Catala J, Iborra JL, Canovas M. cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol Microbiol. 2011; 82:1110-28.
  • [49]Valderrama JA, Shingler V, Carmona M, Diaz E. AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB J Biol Chem. 2014; 289:1892-904.
  • [50]Garcia-Maurino SM, Perez-Martinez I, Amardor CI, Canosa I, Santero E. Transcriptional activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas putida. Mol Microbiol. 2013; 89:189-205.
  • [51]Krin E, Derzelle S, Bedard K, Adib-Conquy M, Turlin E, Lenormand P et al.. Regulatory role of UvrY in adaptation of Photorhabdus luminescens growth in inside the insect. Environ Microbiol. 2008; 10:1118-34.
  • [52]Hsiao A, Liu Z, Joelsson A, Zhu J. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci U S A. 2006; 103:14542-7.
  • [53]Marsh JW, Taylor RK. Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus. J Bacteriol. 1999; 181:1110-7.
  • [54]Hsiao A, Xu X, Kan B, Kukarni RV, Zhu J. Direct regulation by the Vibrio cholerae regulator ToxT modulate colonization and anticolonization pilus expression. Infect Immun. 2009; 77:1383-8.
  • [55]Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biogeosciences. 1983; 1:784-91.
  • [56]Wright AC, Simpson LM, Oliver JD, Morris JG. Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect Immun. 1990; 58:1769-73.
  • [57]Milton DL, O'Toole R, Hörstedt P, Wolf WH. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996; 178:1310-9.
  • [58]Jeong HS, Jeong KC, Choi HK, Park K, Lee KH, Rhee JH et al.. Differential expression of Vibrio vulnificus elastase gene in a growth phase-dependent manner by two different types of promoters. J Biol Chem. 2001; 276:13875-80.
  • [59]Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988; 70:191-7.
  • [60]Smyth FK, Speed TP. Normalization of cDNA microarray data. Method. 2003; 21:265-73.
  • [61]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV et al.. The COG database: an updated version includes eukaryotes. BMC Bioinform. 2003; 4:41. BioMed Central Full Text
  • [62]Lynch AS, Lin ECC. Transcriptional control mediated by the ArcA two component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol. 1996; 178:6235-49.
  • [63]Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mo Biol Evol. 1987; 4:406-25.
  • [64]Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39:783-91.
  • [65]Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. Bryson V, Vogel HJ, editors. Academic, New York; 1965: p.97-166.
  • [66]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30:2725-9.
  文献评价指标  
  下载次数:17次 浏览次数:7次