期刊论文详细信息
BMC Microbiology
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB
Volker F. Wendisch1  Hironori Taniguchi1  Ulrike Sorger-Herrmann1 
[1] Current adress:, Sandoz, Schaftenau, Austria
关键词: GlxR;    PhoR;    Acetate metabolism;    Carbon metabolism;    Phosphorus metabolism;    RamB;    pstS;    Phosphate starvation;    Corynebacterium glutamicum;   
Others  :  1212030
DOI  :  10.1186/s12866-015-0437-1
 received in 2014-12-18, accepted in 2015-05-05,  发布年份 2015
PDF
【 摘 要 】

Background

The pstSCAB operon of Corynebacterium glutamicum, which encodes an ABC transport system for uptake of phosphate (Pi), is induced during the Pi starvation response. The two-component regulatory system PhoRS is involved in this response, but partial Pi starvation induction of pstSCAB in a ΔphoRS mutant indicated the involvement of additional regulator(s). Regulation of pstSCAB also involves the global transcriptional regulator GlxR.

Results

DNA affinity chromatography identified the regulator of acetate metabolism RamB as a protein binding to pstS promoter DNA in vitro. Gel mobility shift assays and mutational analysis of the pstS promoter region revealed that RamB binds to two sites localized at positions −74 to −88 and −9 to +2 with respect to the transcriptional start site of pstSCAB. Reporter gene studies supported the in vivo relevance of both binding sites for activation of pstSCAB by RamB. DNA microarray analysis revealed that expression of many Pi starvation genes reached higher levels during the Pi starvation response on minimal medium with glucose as sole carbon source than in Pi starved acetate-grown C. glutamicum cells.

Conclusions

In C. glutamicum, RamB is involved in expression control of pstSCAB operon. Thus, transcriptional regulation of pstSCAB is complex involving activation by the phosphate-responsive two-component regulatory system PhoSR and the regulators of carbon metabolism GlxR and RamB.

【 授权许可】

   
2015 Sorger-Herrmann et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150613020042295.pdf 1091KB PDF download
Fig. 5. 21KB Image download
Fig. 4. 21KB Image download
Fig. 3. 11KB Image download
Fig. 2. 25KB Image download
Fig. 1. 69KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Neidhardt FC. Escherichia coli and Salmonella: Cellular and Molecular Biology . ASM Press, Washington, DC, USA; 1996.
  • [2]Sonenshein AL, Hoch JA, Losick R. Bacillus subtilis and Its Closest Relatives. ASM Press, Washington, DC, USA; 2002.
  • [3]Hecker M, Völker U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σB regulon. Mol Microbiol. 1998; 29:1129-1136.
  • [4]Prágai Z, Allenby NEE, O’Connor N, Dubrac S, Rapoport G, Msadek T et al.. Transcriptional regulation of the phoPR Operon in Bacillus subtilis. J Bacteriol. 2004; 186:1182-1190.
  • [5]Prágai Z, Harwood CR. Regulatory interactions between the Pho and σB-dependent general stress regulons of Bacillus subtilis. Microbiology. 2002; 148:1593-1602.
  • [6]Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol. 2001; 41:757-774.
  • [7]Antelmann H, Scharf C, Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol. 2000; 182:4478-4490.
  • [8]Minnig K, Lazarevic V, Soldo B, Mauël C. Analysis of teichoic acid biosynthesis regulation reveals that the extracytoplasmic function sigma factor σM is induced by phosphate depletion in Bacillus subtilis W23. Microbiology. 2005; 151:3041-3049.
  • [9]Abe S, Takayama K-I, Kinoshita S. Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol. 1967; 13:279-301.
  • [10]Hermann T. Industrial production of amino acids by coryneform bacteria. J Biotechnol. 2003; 104:155-172.
  • [11]Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol. 2005; 69:1-8.
  • [12]Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol. 2005; 71:7139-7144.
  • [13]Morbach S, Sahm H, Eggeling L. L-Isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol. 1996; 62:4345-4351.
  • [14]Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol. 2007; 73:2079-2084.
  • [15]Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L. Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol. 2002; 68:2246-2250.
  • [16]Jensen JVK, Wendisch VF. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Factories. 2013; 12:63. BioMed Central Full Text
  • [17]Schneider J, Eberhardt D, Wendisch VF. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol. 2012; 95:169-178.
  • [18]Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010; 88:859-868.
  • [19]Mimitsuka T, Sawai H, Hatsu M, Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci, Biotechnol, Biochem. 2007; 71:2130-2135.
  • [20]Krause FS, Blombach B, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol. 2010; 76:8053-8061.
  • [21]Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol. 2014; 98:297-311.
  • [22]Vogt M, Haas S, Polen T, van Ooyen J, Bott M. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb, Biotechnol; 2014.
  • [23]Wendisch VF, Bott M. Phosphorus Metabolism. In: Handbook of Corynebacterium glutamicum . CRC Press, Boca Raton, USA; 2005: p.377-396.
  • [24]Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM. Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2006; 72:1099-1106.
  • [25]Lambert C, Weuster-Botz D, Weichenhain R, Kreutz EW, de Graaf AA, Schoberth SM. Monitoring of inorganic polyphosphate dynamics in Corynebacterium glutamicum using a novel oxygen sparger for real time 31P in vivo NMR. Acta Biotechnol. 2002; 22:245-260.
  • [26]Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF et al.. Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett. 2005; 243:133-140.
  • [27]Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF. NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol. 2007; 73:5026-5033.
  • [28]Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF. Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl Environ Microbiol. 2009; 75:3161-3170.
  • [29]Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol. 2010; 87:583-593.
  • [30]Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF. Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010; 87:703-713.
  • [31]Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol. 2003; 185:4519-4529.
  • [32]Rittmann D, Sorger-Herrmann U, Wendisch VF. Phosphate starvation-inducible gene ushA encodes a 5’ nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl Environ Microbiol. 2005; 71:4339-4344.
  • [33]Kočan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M. Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol. 2006; 188:724-732.
  • [34]Schaaf S, Bott M. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol. 2007; 189:5002-5011.
  • [35]Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST et al.. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology. 2013; 159:12-22.
  • [36]Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST et al.. The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors. PLoS One. 2014; 9: Article ID e113265
  • [37]Toyoda K, Teramoto H, Inui M, Yukawa H. Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J Bacteriol. 2011; 193:4123-4133.
  • [38]Panhorst M, Sorger-Herrmann U, Wendisch VF. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J Biotechnol. 2011; 154:149-155.
  • [39]Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M. Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol. 2010; 76:6910-6919.
  • [40]Cramer A, Auchter M, Frunzke J, Bott M, Eikmanns BJ. RamB, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to regulation by RamA and RamB. J Bacteriol. 2007; 189:1145-1149.
  • [41]Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol. 2004; 186:2798-2809.
  • [42]Blombach B, Cramer A, Eikmanns BJ, Schreiner M. RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2009; 16:236-239.
  • [43]Kim H-J, Kim T-H, Kim Y, Lee H-S. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol. 2004; 186:3453-3460.
  • [44]Van Ooyen J, Emer D, Bussmann M, Bott M, Eikmanns BJ, Eggeling L. Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J Biotechnol. 2011; 154:140-148.
  • [45]Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ et al.. Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett. 2008; 281:190-197.
  • [46]Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. Identification of RamA, a Novel LuxR-Type Transcriptional Regulator of Genes Involved in Acetate Metabolism of Corynebacterium glutamicum. J Bacteriol. 2006; 188:2554-2567.
  • [47]Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A. 2005; 102:8327-8332.
  • [48]Kimura S, Makino K, Shinagawa H, Amemura M, Nakata A. Regulation of the phosphate regulon of Escherichia coli: characterization of the promoter of the pstS gene. Mol Gen Genet MGG. 1989; 215:374-380.
  • [49]Spira B, Yagil E. The integration host factor (IHF) affects the expression of the phosphate-binding protein and of alkaline phosphatase in Escherichia coli. Curr Microbiol. 1999; 38:80-85.
  • [50]Liu W, Qi Y, Hulett FM. Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity. Mol Microbiol. 1998; 28:119-130.
  • [51]Sambrook J. Molecular Cloning: A Laboratory Manual, Third Edition. Cold Spring Harbor Laboratory Press, N.Y; 2001.
  • [52]Keilhauer C, Eggeling L, Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol. 1993; 175:5595-5603.
  • [53]Edwards CJ, Innes DJ, Burns DM, Beacham IR. UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli: silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli, indicate recent and early silencing events, respectively. FEMS Microbiol Lett. 1993; 114:293-298.
  • [54]Vasicová P, Abrhámová Z, Nesvera J, Pátek M, Sahm H, Eikmanns B. Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech. 1998; 12:743-746.
  • [55]Van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol. 1999; 52:541-545.
  • [56]Engels V, Wendisch VF. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol. 2007; 189:2955-2966.
  • [57]Gabrielsen OS, Hornes E, Korsnes L, Ruet A, Oyen TB. Magnetic DNA affinity purification of yeast transcription factor tau–a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res. 1989; 17:6253-6267.
  • [58]Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M et al.. A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis. 2001; 22:4404-4422.
  • [59]Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999; 71:2871-2882.
  • [60]Wennerhold J, Krug A, Bott M. The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem. 2005; 280:40500-40508.
  • [61]Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF et al.. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol. 2004; 182:354-363.
  • [62]Wendisch VF. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol. 2003; 104:273-285.
  • [63]Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. FEMS Microbiol Lett. 2007; 273:109-119.
  • [64]Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990; 185:60-89.
  • [65]Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166:557-580.
  文献评价指标  
  下载次数:26次 浏览次数:13次