期刊论文详细信息
BMC Genomics
Characterisation of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing
Lin-fa Wang1  Andrew G Bean4  Michelle L Baker4  Peng Zhou4  Glenn A Marsh4  Pauline Cottee4  Mark L Tizard4  Kristie A Jenkins4  Mary Tachedjian4  Marc R Friedländer2  Vladimir A Likic3  Cameron R Stewart4  Christopher Cowled4 
[1] Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore;Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF), Barcelona, Spain;Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia;CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Geelong East, Victoria 3220, Australia
关键词: Transcriptome;    Non-coding RNA;    MicroRNA;    Pteropus alecto;    Chiroptera;    Bats;   
Others  :  1216267
DOI  :  10.1186/1471-2164-15-682
 received in 2013-12-18, accepted in 2014-08-07,  发布年份 2014
PDF
【 摘 要 】

Background

Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats.

Results

This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction.

Conclusions

MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species.

【 授权许可】

   
2014 Cowled et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629173713319.pdf 1061KB PDF download
Figure 5. 54KB Image download
Figure 4. 59KB Image download
Figure 3. 19KB Image download
Figure 2. 23KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ: A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 2005, 307(5709):580-584.
  • [2]Brunet-Rossinni AK, Austad SN: Ageing studies on bats: a review. Biogerontology 2004, 5(4):211-222.
  • [3]Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH: Ecosystem services provided by bats. Ann N Y Acad Sci 2011, 1223:1-38.
  • [4]Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T: Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 2006, 19(3):531-545.
  • [5]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [6]Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309(5740):1577-1581.
  • [7]Griffiths-Jones S: The microRNA registry. Nucleic Acids Res 2004, 32(Database issue):D109-D111.
  • [8]Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-D144.
  • [9]Biggar KK, Storey KB: Identification and expression of microRNA in the brain of hibernating bats. Myotis Lucifugus Gene 2014, 544(1):67-74.
  • [10]Iwanowicz DD, Iwanowicz LR, Hitt NP, King TL: Differential Expression Profiles of microRNA in the Little Brown Bat (Myotis lucifugus) Associated with White Nose Syndrome Affected and Unaffected Individuals. U.S. Geological Survey Open-File Report 2013–1099 2013. Available at http://pubs.usgs.gov/of/2013/1099 webcite
  • [11]Kornfeld SF, Biggar KK, Storey KB: Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: a model of muscle atrophy resistance. Genomics Proteomics Bioinf 2012, 10(5):295-301.
  • [12]Maistrovski Y, Biggar KK, Storey KB: HIF-1alpha regulation in mammalian hibernators: role of non-coding RNA in HIF-1alpha control during torpor in ground squirrels and bats. J Comp Physiol B Biochem Syst Environ Physiol 2012, 182(6):849-859.
  • [13]Platt RN 2nd, Vandewege MW, Kern C, Schmidt CJ, Hoffmann FG, Ray DA: Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol Biol Evol 2014, 31(6):1536-1545.
  • [14]Shaw TI, Srivastava A, Chou WC, Liu L, Hawkinson A, Glenn TC, Adams R, Schountz T: Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis). PLoS One 2012, 7(11):e48472.
  • [15]Gromak N: Intronic microRNAs: a crossroad in gene regulation. Biochem Soc Trans 2012, 40(4):759-761.
  • [16]Triboulet R, Chang HM, Lapierre RJ, Gregory RI: Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 2009, 15(6):1005-1011.
  • [17]Melamed Z, Levy A, Ashwal-Fluss R, Lev-Maor G, Mekahel K, Atias N, Gilad S, Sharan R, Levy C, Kadener S, Ast G: Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions. Mol Cell 2013, 50(6):869-881.
  • [18]Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H: Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005, 33(8):2697-2706.
  • [19]Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013, 339(6118):456-460.
  • [20]Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, Briasoulis E: The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci 2013, 70(5):795-814.
  • [21]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003, 115(7):787-798.
  • [22]Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009, 10(4):252-263.
  • [23]Sharbati S, Friedlander MR, Sharbati J, Hoeke L, Chen W, Keller A, Stahler PF, Rajewsky N, Einspanier R: Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics 2010, 11:275.
  • [24]Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y: In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 2009, 94(2):125-131.
  • [25]Li N, You X, Chen T, Mackowiak SD, Friedlander MR, Weigt M, Du H, Gogol-Doring A, Chang Z, Dieterich C, Hu Y, Chen W: Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery. Nucleic Acids Res 2013, 41(6):3619-3634.
  • [26]Fujimoto T, Doi K, Koyanagi M, Tsunoda T, Takashima Y, Yoshida Y, Sasazuki T, Shirasawa S: ZFAT is an antiapoptotic molecule and critical for cell survival in MOLT-4 cells. FEBS Lett 2009, 583(3):568-572.
  • [27]Zhang J, Zhang J, Liu LH, Zhou Y, Li YP, Shao ZH, Wu YJ, Li MJ, Fan YY, Shi HJ: Effects of miR-541 on neurite outgrowth during neuronal differentiation. Cell Biochem Funct 2011, 29(4):279-286.
  • [28]Li H, Shen L, Ma C, Huang Y: Differential expression of miRNAs in the nervous system of a rat model of bilateral sciatic nerve chronic constriction injury. Int J Mol Med 2013, 32(1):219-226.
  • [29]Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene 2006, 25(46):6176-6187.
  • [30]Lu T, Shao N, Ji C: Targeting microRNAs to modulate TRAIL-induced apoptosis of cancer cells. Cancer Gene Ther 2013, 20(1):33-37.
  • [31]Thomas MP, Lieberman J: Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 2013, 253(1):237-252.
  • [32]Streicher KL, Zhu W, Lehmann KP, Georgantas RW, Morehouse CA, Brohawn P, Carrasco RA, Xiao Z, Tice DA, Higgs BW, Richman L, Jallal B, Ranade K, Yao Y: A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 2012, 31(12):1558-1570.
  • [33]Liu Y, Hu W, Wang H, Lu M, Shao C, Menzel C, Yan Z, Li Y, Zhao S, Khaitovich P, Liu M, Chen W, Barnes BM, Yan J: Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel. Physiol Genomics 2010, 42A(1):39-51.
  • [34]Zhang R, Peng Y, Wang W, Su B: Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 2007, 17(5):612-617.
  • [35]Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW: Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 2006, 349(1):59-68.
  • [36]Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, Garofalo M, Di Leva G, Volinia S, Lin HJ, Perrotti D, Kuehl M, Aqeilan RI, Palumbo A, Croce CM: Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010, 18(4):367-381.
  • [37]White NM, Khella HW, Grigull J, Adzovic S, Youssef YM, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Jewett MA, Evans AJ, Gabril M, Yousef GM: miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. Br J Cancer 2011, 105(11):1741-1749.
  • [38]Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP: Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci U S A 2010, 107(19):8666-8671.
  • [39]Chang SJ, Weng SL, Hsieh JY, Wang TY, Chang MD, Wang HW: MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genet 2011, 4:65.
  • [40]Aschrafi A, Kar AN, Natera-Naranjo O, Macgibeny MA, Gioio AE, Kaplan BB: MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci 2012, 69(23):4017-4027.
  • [41]FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ webcite]
  • [42]Cutadapt [http://code.google.com/p/cutadapt/ webcite]
  • [43]FASTX-Toolkit [http://hannonlab.cshl.edu/fastx_toolkit/ webcite]
  • [44]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.
  • [45]RFAM [http://rfam.sanger.ac.uk webcite]
  • [46]Command line BLAST [http://blast.ncbi.nlm.nih.gov webcite]
  • [47]MiRBase [http://www.mirbase.org webcite]
  • [48]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [49]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol 2003, 5(1):R1.
  • [50]The DAVID web service [http://david.abcc.ncifcrf.gov/home.jsp webcite]
  文献评价指标  
  下载次数:44次 浏览次数:18次