期刊论文详细信息
BMC Genomics
Transcriptome differences between two sister desert poplar species under salt stress
Jianquan Liu2  Dongshi Wan2  Xu Zhang2  Yongzhi Yang2  Jing Lu2  Jianju Feng1  Jian Zhang2 
[1] Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Science, Tarim University, Alar 843300, Xinjiang, China;State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
关键词: Alternative splicing;    Differentially expressed genes;    Transcriptome;    Salinity stress;    Salt tolerance;    P. pruinosa;    P. euphratica;   
Others  :  1217294
DOI  :  10.1186/1471-2164-15-337
 received in 2013-07-13, accepted in 2014-04-30,  发布年份 2014
PDF
【 摘 要 】

Background

Populus euphratica Oliv and P. pruinosa Schrenk (Salicaceae) both grow in dry desert areas with high summer temperatures. However, P. euphratica is distributed in dry deserts with deep underground water whereas P. pruinosa occurs in deserts in which there is underground water close to the surface. We therefore hypothesized that these two sister species may have evolved divergent regulatory and metabolic pathways during their interaction with different salt habitats and other stresses. To test this hypothesis, we compared transcriptomes from callus exposed to 24 h of salt stress and control callus samples from both species and identified differentially expressed genes (DEGs) and alternative splicing (AS) events that had occurred under salt stress.

Results

A total of 36,144 transcripts were identified and 1430 genes were found to be differentially expressed in at least one species in response to salt stress. Of these DEGs, 884 and 860 were identified in P. euphratica and P. pruinosa, respectively, while 314 DEGs were common to both species. On the basis of parametric analysis of gene set enrichment, GO enrichment in P. euphratica was found to be significantly different from that in P. pruinosa. Numerous genes involved in hormone biosynthesis, transporters and transcription factors showed clear differences between the two species in response to salt stress. We also identified 26,560 AS events which were mapped to 8380 poplar genomic loci from four libraries. GO enrichments for genes undergoing AS events in P. euphratica differed significantly from those in P. pruinosa.

Conclusions

A number of salt-responsive genes in both P. euphratica and P. pruinosa were identified and candidate genes with potential roles in the salinity adaptation were proposed. Transcriptome comparisons of two sister desert poplar species under salt stress suggest that these two species may have developed different genetic pathways in order to adapt to different desert salt habitats. The DEGs that were found to be common to both species under salt stress may be especially important for future genetic improvement of cultivated poplars or other crops through transgenic approaches in order to increase tolerance of saline soil conditions.

【 授权许可】

   
2014 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706023259938.pdf 1918KB PDF download
Figure 7. 59KB Image download
Figure 6. 141KB Image download
Figure 5. 117KB Image download
Figure 4. 65KB Image download
Figure 3. 49KB Image download
Figure 2. 89KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Boyer JS: Plant productivity and environment. Science 1982, 218(4571):443-448.
  • [2]Rengasamy P: World salinization with emphasis on Australia. J Exp Bot 2006, 57(5):1017-1023.
  • [3]Munns R, Tester M: Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008, 59(1):651-681.
  • [4]Langridge P, Paltridge N, Fincher G: Functional genomics of abiotic stress tolerance in cereals. Briefings Funct Genomics Proteomics 2006, 4(4):343-354.
  • [5]Bohnert HJ, Nelson DE, Jensen RG: Adaptations to environmental stresses. Plant Cell Online 1995, 7(7):1099-1111.
  • [6]Bartels D, Sunkar R: Drought and salt tolerance in plants. Crit Rev Plant Sci 2005, 24(1):23-58.
  • [7]Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K: Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 2009, 150(1):244-256.
  • [8]Xu Z-S, Xia L-Q, Chen M, Cheng X-G, Zhang R-Y, Li L-C, Zhao Y-X, Lu Y, Ni Z-Y, Liu L, Qiu ZG, Ma YZ: Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 2007, 65(6):719-732.
  • [9]Urano K, Kurihara Y, Seki M, Shinozaki K: ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 2010, 13(2):132-138.
  • [10]Close TJ: Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 1996, 97(4):795-803.
  • [11]Forrest K, Bhave M: Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 2007, 7(4):263-289.
  • [12]Meiri D, Breiman A: Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. The. Plant J 2009, 59(3):387-399.
  • [13]Munns R: Genes and salt tolerance: bringing them together. New Phytol 2005, 167(3):645-663.
  • [14]Selote DS, Khanna-Chopra R: Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 2006, 127(3):494-506.
  • [15]Tyerman SD, Niemietz CM, Bramley H: Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 2002, 25(2):173-194.
  • [16]Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ: Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000, 51(1):463-499.
  • [17]Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K: Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell Online 2001, 13(1):61-72.
  • [18]Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 2006, 57(1):781-803.
  • [19]Deyholos MK: Making the most of drought and salinity transcriptomics. Plant Cell Environ 2010, 33(4):648-654.
  • [20]Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ: Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 2005, 44(5):826-839.
  • [21]Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K: Comparative Genomics in Salt Tolerance between Arabidopsis and Arabidopsis-Related Halophyte Salt Cress Using Arabidopsis Microarray. Plant Physiol 2004, 135(3):1697-1709.
  • [22]Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA: Transcriptional Profiling Implicates Novel Interactions between Abiotic Stress and Hormonal Responses in Thellungiella, a Close Relative of Arabidopsis. Plant Physiol 2006, 140(4):1437-1450.
  • [23]Rabello A, Guimaraes C, Rangel P, Da Silva F, Seixas D, De Souza E, Brasileiro A, Spehar C, Ferreira M, Mehta A: Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 2008, 9(1):485. BioMed Central Full Text
  • [24]Beritognolo I, Harfouche A, Brilli F, Prosperini G, Gaudet M, Brosche M, Salani F, Kuzminsky E, Auvinen P, Paulin L, Kangasjärvi J, Loreto F, Valentini R, Mugnozza GS, Sabatti M: Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiol 2011, 31(12):1335-1355.
  • [25]Cohen D, Bogeat-Triboulot M-B, Tisserant E, Balzergue S, Martin-Magniette M-L, Lelandais G, Ningre N, Renou J-P, Tamby J-P, Le Thiec D, Hummel I: Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010, 11(1):630. BioMed Central Full Text
  • [26]Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A: Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 2010, 10:150. BioMed Central Full Text
  • [27]Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J: Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 2011, 31(4):452-461.
  • [28]Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X: Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell physiol 2010, 51(6):997-1006.
  • [29]Mane SP, Robinet CV, Ulanov A, Schafleitner R, Tincopa L, Gaudin A, Nomberto G, Alvarado C, Solis C, Bolivar LA, Blas R, Ortega O, Solis J, Panta A, Rivera C, Samolski I, Carbajulca DH, Bonierbale M, Pati A, Heath LS, Bohnert HJ, Grene R: Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes. Funct Plant Biol 2008, 35(8):669-688.
  • [30]Zahaf O, Blanchet S, De Zélicourt A, Alunni B, Plet J, Laffont C, De Lorenzo L, Imbeaud S, Ichanté J-L, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M: Comparative Transcriptomic Analysis of Salt Adaptation in Roots of Contrasting Medicago truncatula Genotypes. Mol Plant 2012, 5(5):1068-1081.
  • [31]Rodrigues FA, De Laia ML, Zingaretti SM: Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Sci 2009, 176(2):286-302.
  • [32]Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D, Awada T, Kalaitzis P: Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS One 2012, 7(8):e42931.
  • [33]Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T: Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses. Plant Cell Online 2002, 14(3):559-574.
  • [34]He X, Hou X, Shen Y, Huang Z: TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett 2011, 585(8):1231-1237.
  • [35]Ingram J, Bartels D: The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 1996, 47(1):377-403.
  • [36]Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 2002, 31(3):279-292.
  • [37]Shinozaki K, Yamaguchi-Shinozaki K, Seki M: Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 2003, 6(5):410-417.
  • [38]Xiong L, Schumaker KS, Zhu J-K: Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell Online 2002, 14(suppl 1):S165-S183.
  • [39]Zhu J-K: Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002, 53(1):247-273.
  • [40]Chen S, Polle A: Salinity tolerance of Populus. Plant Biol 2010, 12(2):317-333.
  • [41]Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, et al.: The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313(5793):1596-1604.
  • [42]Wullschleger SD, Weston DJ, DiFazio SP, Tuskan GA: Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol 2013, 33(4):357-364.
  • [43]Eckenwalder JE: Systematics and evolution of Populus. In In Biology of Populus. Edited by Stettler RF, Heilman JPE, Hinckley TM. Ottawa: NRC Research Press; 1996:7-32.
  • [44]Hukin D, Cochard H, Dreyer E, Thiec DL, Bogeat-Triboulot MB: Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species? J Exp Bot 2005, 56(418):2003-2010.
  • [45]Ma H-C, Fung L, Wang S-S, Altman A, Hüttermann A: Photosynthetic response of Populus euphratica to salt stress. For Ecol Manag 1997, 93(1–2):55-61.
  • [46]Wang J, Wu Y, Ren G, Guo Q, Liu J, Lascoux M: Genetic Differentiation and Delimitation between Ecologically Diverged Populus euphratica and P. pruinosa. PLoS One 2011, 6(10):e26530.
  • [47]Chen S, Li J, Fritz E, Wang S, Hüttermann A: Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 2002, 168(1–3):217-230.
  • [48]Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang X, Polle A: Populus euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress. Plant Physiol 2005, 139(4):1762-1772.
  • [49]Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L: Molecular characterization of PeSOS1: the putative Na+/H + antiporter of Populus euphratica. Plant Mol Biol 2007, 65(1–2):1-11.
  • [50]Zhang F, Wang Y, Yang Y, Wu HAO, Wang DI, Liu J: Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 2007, 30(7):775-785.
  • [51]Zhang J, Xie P, Lascoux M, Meagher TR, Liu J: Rapidly Evolving Genes and Stress Adaptation of Two Desert Poplars, Populus euphratica and P. pruinosa. PLoS One 2013, 8(6):e66370.
  • [52]Peng S, Jiang H, Zhang S, Chen L, Li X, Korpelainen H, Li C: Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis. Tree Physiol 2012, 32(12):1541-1555.
  • [53]Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y: NaCl-Induced Alternations of Cellular and Tissue Ion Fluxes in Roots of Salt-Resistant and Salt-Sensitive Poplar Species. Plant Physiol 2009, 149(2):1141-1153.
  • [54]Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hüttermann A, Polle A: Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 2008, 28(6):947-957.
  • [55]Ye C-Y, Zhang H-C, Chen J-H, Xia X-L, Yin W-L: Molecular characterization of putative vacuolar NHX-type Na+/H + exchanger genes from the salt-resistant tree Populus euphratica. Physiol Plant 2009, 137(2):166-174.
  • [56]Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K: AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta-Gene Regul Mech 2012, 1819(2):86-96.
  • [57]Oh S-J, Song SI, Kim YS, Jang H-J, Kim SY, Kim M, Kim Y-K, Nahm BH, Kim J-K: Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. Plant Physiol 2005, 138(1):341-351.
  • [58]Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Rani NS, Viraktamath BC, Madhav MS: Allele mining in crops: Prospects and potentials. Biotechnol Adv 2010, 28(4):451-461.
  • [59]Latha R, Rubia L, Bennett J, Swaminathan MS: Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol Biotechnol 2004, 27(2):101-108.
  • [60]Jiang S-Y, Ma A, Ramamoorthy R, Ramachandran S: Genome-Wide Survey on Genomic Variation, Expression Divergence, and Evolution in Two Contrasting Rice Genotypes under High Salinity Stress. Genome Biol Evol 2013, 5(11):2032-2050.
  • [61]Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K: Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant Journal 2002, 29(4):417-426.
  • [62]Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F: Galactinol synthase1. A Novel Heat Shock Factor Target Gene Responsible for Heat-Induced Synthesis of Raffinose Family Oligosaccharides in Arabidopsis. Plant physiology 2004, 136(2):3148-3158.
  • [63]Gu R, Fonseca S, Puskás LG, Hackler L, Zvara Á, Dudits D, Pais MS: Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 2004, 24(3):265-276.
  • [64]Li B, Duan H, Li J, Deng X, Yin W, Xia X: Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 2013, 81(6):525-539.
  • [65]Chaves MM, Flexas J, Pinheiro C: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 2009, 103(4):551-560.
  • [66]Bogeat-Triboulot M-B, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kangasjärvi J, Dreyer E: Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions. Plant Physiol 2007, 143(2):876-892.
  • [67]Tang S, Liang H, Yan D, Zhao Y, Han X, Carlson J, Xia X, Yin W: Populus euphratica: the transcriptomic response to drought stress. Plant Mol Biol 2013, 83(6):539-557.
  • [68]Wang B-B, Brendel V: Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci 2006, 103(18):7175-7180.
  • [69]Polle A, Douglas C: The molecular physiology of poplars: paving the way for knowledge-based biomass production. Plant Biol 2010, 12(2):239-241.
  • [70]Postnikova OA, Shao J, Nemchinov LG: Analysis of the alfalfa root transcriptome in response to salinity stress. Plant & cell physiology 2013, 54(7):1041-1055.
  • [71]Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [72]Roberts A, Pachter L: Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Meth 2013, 10(1):71-73.
  • [73]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech 2010, 28(5):511-515.
  • [74]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [75]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [76]Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C: EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 2013, 29(8):1035-1043.
  • [77]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [78]Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J: WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 2006, 34(suppl 2):W293-W297.
  • [79]Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010, 38(suppl 2):W64-W70.
  • [80]Zhang S, Chen F, Peng S, Ma W, Korpelainen H, Li C: Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress. Proteomics 2010, 10(14):2661-2677.
  • [81]Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25(4):402-408.
  • [82]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [83]Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456(7221):470-476.
  文献评价指标  
  下载次数:30次 浏览次数:25次