期刊论文详细信息
BMC Microbiology
Regulation of neuraminidase expression in Streptococcus pneumoniae
Marco R Oggioni1  Susanna Ricci2  Peter Andrew3  Jean-Denis Docquier2  Gianni Pozzi2  Claudia Trappetti1  Leonarda Colomba2  Alessandro Bidossi2  Alice Gerlini2  Jasvinder Kaur Hayre2  Luciana Gualdi2 
[1] Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia;Dipartimento di Biotecnologie, Università di Siena, Siena, Italy;Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
关键词: Carbon catabolite repression;    Metabolic regulation;    Sialic acid;   
Others  :  1221764
DOI  :  10.1186/1471-2180-12-200
 received in 2012-02-13, accepted in 2012-09-05,  发布年份 2012
PDF
【 摘 要 】

Background

Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung.

Results

In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells.

Conclusions

The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media.

【 授权许可】

   
2012 Gualdi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803133850704.pdf 816KB PDF download
Figure 5. 38KB Image download
Figure 4. 102KB Image download
Figure 3. 108KB Image download
Figure 2. 89KB Image download
Figure 1. 116KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kadioglu A, Weiser JN, Paton JC, Andrew PW: The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008, 6:288-301.
  • [2]King SJ: Pneumococcal modification of host sugars: a major contributor to colonization of the human airway? Mol Oral Microbiol 2010, 25:15-24.
  • [3]Camara M, Boulnois GJ, Andrew PW, Mitchell TJ: A neuraminidase from Streptococcus pneumoniae has the feature of a surface protein. Infect Immun 1994, 62:3688-3695.
  • [4]Berry AM, Paton JC: Sequence heterogenicity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 1996, 64:5255-5262.
  • [5]McCullers JA, Bartmess KC: Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 2003, 187:1000-1009.
  • [6]Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A: Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 2006, 74:4014-4020.
  • [7]Tong HH, James M, Grants I, Liu X, Shi G, DeMaria TF: Comparison of structural changes of cell surface carbohydrates in the eustachian tube epithelium of chinchillas infected with a Streptococcus pneumoniae neuraminidase-deficient mutant or its isogenic parent strain. Microb Pathog 2001, 31:309-317.
  • [8]Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS: Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 2010, 12:1576-1588.
  • [9]Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, et al.: The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 2009, 206:1845-1852.
  • [10]Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A: The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 2009, 77:3722-3730.
  • [11]Johnston JW, Zaleski A, Allen S, Mootz JM, Armbruster D, Gibson BW, et al.: Regulation of sialic acid transport and catabolism in Haemophilus influenzae. Mol Microbiol 2007, 66:26-39.
  • [12]Rohmer L, Hocquet D, Miller SI: Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 2011, 19:341-348.
  • [13]Yesilkaya H, Manco S, Kadioglu A, Terra VS, Andrew PW: The ability to utilize mucin affects the regulation of virulence gene expression in Streptococcus pneumoniae. FEMS Microbiol Lett 2008, 278:231-235.
  • [14]Marion C, Burnaugh AM, Woodiga SA, King SJ: Sialic acid transport contributes to pneumococcal colonization. Infect Immun 2011, 79:1262-1269.
  • [15]Almagro-Moreno S, Boyd EF: Insights into the evolution of sialic acid catabolism among bacteria. BMC Genomics 2009, 26:118.
  • [16]Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM: Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 2004, 68:132-153.
  • [17]Trappetti C, Kadioglu A, Carter M, Athwal J, Iannelli F, Pozzi G, et al.: Sialic acid: a preventable signal for pneumococcal biofilm, colonisation and invasion of the host. J Infect Dis 2009, 199:1497-1505.
  • [18]Pettigrew MM, Fennie KP, York MP, Daniels J, Ghaffar F: Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. Infect Immun 2006, 74:3360-3365.
  • [19]Xu H, Sullivan TJ, Sekiguci J, Kirikae T, Ojima I, Stratton CF, et al.: Mechanism and inhibition of saFabI, the enoyl reductase from Staphylococcus aureus. Biochemistry 2008, 47:4228-4236.
  • [20]Xu G, Kiefel MJ, Wilson JC, Andrew PW, Oggioni MR, Taylor GL: Three Streptococcus pneumoniae Sialidases: three different products. J Am Chem Soc 2011, 133:1718-1721.
  • [21]King SJ, Hippe KR, Gould JM, Bae D, Peterson S, Cline RT, et al.: Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol Microbiol 2004, 54:159-171.
  • [22]Almagro-Moreno S, Boyd EF: Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut Microbes 2010, 1:45-50.
  • [23]Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, et al.: A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 2012, 7:e33320.
  • [24]Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, et al.: Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 2006, 61:1196-1210.
  • [25]LeMessuier KS, Ogunniyi DA, Paton JC: Differential expression of key pneumococcal virulence genes in vivo. Microbiology 2006, 152:305-311.
  • [26]Bateman A: The SIS domain: a phosphosugar-binding domain. Trends Biochem Sci 1999, 24:94-95.
  • [27]Tong HH, Blue LE, James MA, De Maria TF: Evaluation of virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect Immun 2000, 68:921-924.
  • [28]Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI: Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 2004, 190:1661-1669.
  • [29]King SJ, Hippe KR, Weiser JN: Deglycosilation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 2006, 59:961-974.
  • [30]Burnaugh AM, Frantz LJ, King SJ: Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 2008, 190:221-230.
  • [31]Hoskins J, Alborn WE, Arnold J, Blaszczak LC, Burgett S, Dehoff BS, et al.: Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 2001, 183:5709-5717.
  • [32]Byers HL, Homer KA, Beighton D: Utilisation of sialic acid by viridans streptococci. J Dent Res 1996, 75:1564-1571.
  • [33]Vollmer W: Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 2008, 32:287-306.
  • [34]Deutscher J, Francke C, Pot B, Postma PW: How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006, 70:939-1031.
  • [35]Poncet S, Milohanic E, Maze A, Nait Abdallah J, Ake F, Larribe M, et al.: Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol 2009, 16:88-102.
  • [36]Iyer R, Baliga NS, Camilli A: Catabolite control protein (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 2005, 187:8340-8349.
  • [37]van Opijnen T, Bodi KL, Camilli A: Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 2009, 6:767-772.
  • [38]Carvalho SM, Kloosterman TG, Kuipers OP, Neves AR: CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae. PLoS One 2011, 6:e26707.
  • [39]Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, et al.: RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 2009, 38:D111-D118.
  • [40]Pearce BJ, Iannelli F, Pozzi G: Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae. Res Microbiol 2002, 153:243-247.
  • [41]Pozzi G, Musmanno RA, Lievens PMJ, Oggioni MR, Plevani P, Manganelli R: Methods and parameters for genetic transformation of Streptococcus sanguis Challis. Res Microbiol 1990, 141:659-670.
  • [42]Pozzi G, Musmanno RA, Renzoni EA, Oggioni MR, Cusi MG: Host-vector system for integration of recombinant DNA into chromosomes of transformable and nontransformable streptococci. J Bacteriol 1988, 170:1969-1972.
  • [43]Iannelli F, Pozzi G: Method for introducing specific and unmarked mutations into the chromosome of Streptococcus pneumoniae. Mol Biotechnol 2004, 26:81-86.
  • [44]Chiavolini D, Memmi G, Maggi T, Iannelli F, Pozzi G, Oggioni MR: The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 2003, 3:14. BioMed Central Full Text
  • [45]Carver T, Beriman M, Tivey A, Patel C, Böhme U, Barrell BG, et al.: Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008, 24:2672-2676.
  • [46]Vickerman MM, Iobst S, Jesionowski AM, Gill SR: Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 2007, 189:7799-7807.
  • [47]Denapaite D, Bruckner R, Reichmann P, Henrich B, Maurer P, Schahle Y, et al.: The genome of Streptococcus mitis B6 – what is a commensal? PLoS One 2010, 5:e9426.
  • [48]Reichmann P, Nuhn M, Denapaite D, Bruckner R, Henrich B, Maurer P, et al.: Genome of Streptococcus oralis strain Uo5. J Bacteriol 2011, 193:2888-2889.
  • [49]Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, et al.: Genome of the opportunistic pathogen Streptococcus sanguis. J Bacteriol 2007, 189:3166-3175.
  • [50]Oggioni MR, Iannelli F, Ricci S, Chiavolini D, Parigi R, Trappetti C, et al.: Antibacterial activity of a competence-stimulating peptide in experimental sepsis caused by Streptococcus pneumoniae. Antimicrob Agents Chemother 2004, 48:4725-4732.
  • [51]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:20次 浏览次数:5次