BMC Neuroscience | |
Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice | |
Elias K Michaelis2  Abdulaziz A Al-Yahya1  Mohamed M Sayed-Ahmed4  Mohamed M Hafez4  Ranu Pal2  Dongwei Hui2  Nilam D Patel3  Xinkun Wang2  | |
[1] Ibn Sina National College, Jeddah, Saudi Arabia;Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA;Higuchi Biosciences Center, University of Kansas, 2099 Constant Ave., Lawrence, KS 66047, USA;Department of Pharmacology and Toxicology, School of Pharmacy, King Saud University, Riyadh, Saudi Arabia | |
关键词: Genome; Gene expression profile; Glutamate; Hippocampus; Brain aging; | |
Others : 1092060 DOI : 10.1186/1471-2202-15-37 |
|
received in 2013-07-17, accepted in 2014-02-24, 发布年份 2014 | |
【 摘 要 】
Background
Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice.
Results
During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young.
Conclusions
Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.
【 授权许可】
2014 Wang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128180115520.pdf | 1929KB | download | |
Figure 8. | 109KB | Image | download |
Figure 7. | 64KB | Image | download |
Figure 6. | 69KB | Image | download |
Figure 5. | 60KB | Image | download |
Figure 4. | 191KB | Image | download |
Figure 3. | 203KB | Image | download |
Figure 2. | 58KB | Image | download |
Figure 1. | 213KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Cotman CW, Monaghan DT, Ganong AH: Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 1988, 11:61-80.
- [2]Michaelis EK: Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 1998, 54(4):369-415.
- [3]Ito M: Long-term depression. Annu Rev Neurosci 1989, 12:85-102.
- [4]Bear MF, Abraham WC: Long-term depression in hippocampus. Annu Rev Neurosci 1996, 19:437-462.
- [5]Mattson MP: Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease. Ann N Y Acad Sci 2008, 1144(1):97-112.
- [6]Cheng A, Hou Y, Mattson MP: Mitochondria and neuroplasticity. ASN neuro 2010, 2(5):e00045.
- [7]Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH: Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 1991, 88(14):6368-6371.
- [8]Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M: A key role for TRPM7 channels in anoxic neuronal death. Cell 2003, 115(7):863-877.
- [9]Lafon-Cazal M, Culcasi M, Gaven F, Pietri S, Bockaert J: Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 1993, 32(11):1259-1266.
- [10]Meldrum B, Evans M, Griffiths T, Simon R: Ischaemic brain damage: the role of excitatory activity and of calcium entry. Br J Anaesth 1985, 57(1):44-46.
- [11]Arundine M, Tymianski M: Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003, 34(4–5):325-337.
- [12]Burgoyne RD, Cambray-Deakin MA: The cellular neurobiology of neuronal development: the cerebellar granule cell. Brain Res 1988, 472(1):77-101.
- [13]Balazs R, Jorgensen OS, Hack N: N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 1988, 27(2):437-451.
- [14]Komuro H, Rakic P: Modulation of neuronal migration by NMDA receptors. Science 1993, 260(5104):95-97.
- [15]Mattson MP, Dou P, Kater SB: Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 1988, 8(6):2087-2100.
- [16]Bhatt DH, Zhang S, Gan WB: Dendritic spine dynamics. Annu Rev Physiol 2009, 71:261-282.
- [17]Burke SN, Barnes CA: Neural plasticity in the ageing brain. Nat Rev Neurosci 2006, 7(1):30-40.
- [18]Miller DB, O’Callaghan JP: Aging, stress and the hippocampus. Ageing Res Rev 2005, 4(2):123-140.
- [19]Hof PR, Morrison JH: The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 2004, 27(10):607-613.
- [20]Zoia C, Cogliati T, Tagliabue E, Cavaletti G, Sala G, Galimberti G, Rivolta I, Rossi V, Frattola L, Ferrarese C: Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer’s disease. Neurobiol Aging 2004, 25(2):149-157.
- [21]Nickell J, Pomerleau F, Allen J, Gerhardt GA: Age-related changes in the dynamics of potassium-evoked L-glutamate release in the striatum of Fischer 344 rats. J Neural Transm 2005, 112(1):87-96.
- [22]Zoia CP, Tagliabue E, Isella V, Begni B, Fumagalli L, Brighina L, Appollonio I, Racchi M, Ferrarese C: Fibroblast glutamate transport in aging and in AD: correlations with disease severity. Neurobiol Aging 2005, 26(6):825-832.
- [23]Brewer GJ: Neuronal plasticity and stressor toxicity during aging. Exp Gerontol 2000, 35(9–10):1165-1183.
- [24]Chauhan N, Siegel G: Age-dependent organotypic expression of microtubule-associated proteins (MAP1, MAP2, and MAP5) in rat brain. Neurochem Res 1997, 22(6):713-719.
- [25]Di Stefano G, Casoli T, Fattoretti P, Gracciotti N, Solazzi M, Bertoni-Freddari C: Distribution of map2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem Cytochem 2001, 49(8):1065-1066.
- [26]Arias C, Arrieta I, Massieu L, Tapia R: Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo. Exp Brain Res 1997, 116(3):467-476.
- [27]Hoskinson MM, Yanagawa Y, Obata K, Shuttleworth CW: Calcium-dependent NMDA-induced dendritic injury and MAP2 loss in acute hippocampal slices. Neurosci 2007, 145(1):66-79.
- [28]Buddle M, Eberhardt E, Ciminello LH, Levin T, Wing R, DiPasquale K, Raley-Susman KM: Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Brain Res 2003, 978(1–2):38-50.
- [29]Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K: From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A 2006, 103(32):12161-12166.
- [30]Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16(3):675-686.
- [31]Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K: Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997, 276(5319):1699-1702.
- [32]Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi IY, Belousov AB, Gerhardt GA, Michaelis EK: Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 2009, 29(44):13929-13944.
- [33]Zeng LH, Ouyang Y, Gazit V, Cirrito JR, Jansen LA, Ess KC, Yamada KA, Wozniak DF, Holtzman DM, Gutmann DH, Wong M: Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2007, 28(2):184-196.
- [34]Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA: Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 2011, 59(4):473-481.
- [35]Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A: Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets 2011, 10(5):621-634.
- [36]Swerdlow RH: Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal 2012, 16(12):1434-1455.
- [37]Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM: Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 2001, 22(2):265-272.
- [38]Miraglia Del Giudice E, Coppola G, Scuccimarra G, Cirillo G, Bellini G, Pascotto A: Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor. Eur J Hum Genet 2000, 8(12):994-997.
- [39]Kingwell K: Genetics: Mutations in potassium channel KCNT1[mdash]a novel driver of epilepsy pathogenesis. Nat Rev Neurol 2012, 8(12):658.
- [40]Ben-Ari S, Ofek K, Barbash S, Meiri H, Kovalev E, Greenberg DS, Soreq H, Shoham S: Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance. J Cell Mol Med 2012, 16(3):555-568.
- [41]Perkowski JJ, Murphy GG: Deletion of the Mouse Homolog of KCNAB2, a Gene Linked to Monosomy 1p36, Results in Associative Memory Impairments and Amygdala Hyperexcitability. J Neurosci 2011, 31(1):46-54.
- [42]Hers I, Vincent EE, Tavare JM: Akt signalling in health and disease. Cell Signal 2011, 23(10):1515-1527.
- [43]Kaisho T, Tsutsui H, Tanaka T, Tsujimura T, Takeda K, Kawai T, Yoshida N, Nakanishi K, Akira S: Impairment of natural killer cytotoxic activity and interferon gamma production in CCAAT/enhancer binding protein gamma-deficient mice. J Exp Med 1999, 190(11):1573-1582.
- [44]Mullins DN, Crawford EL, Khuder SA, Hernandez DA, Yoon Y, Willey JC: CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma. BMC Cancer 2005, 5:141. BioMed Central Full Text
- [45]Seng S, Avraham HK, Jiang S, Venkatesh S, Avraham S: KLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner. Mol Cell Biol 2006, 26(22):8371-8384.
- [46]Mukasa A, Wykosky J, Ligon KL, Chin L, Cavenee WK, Furnari F: Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence. Proc Natl Acad Sci 2010, 107(6):2616-2621.
- [47]Ahlemeyer B, Gottwald M, Baumgart-Vogt E: Deletion of a single allele of the Pex11β gene is sufficient to cause oxidative stress, delayed differentiation and neuronal death in mouse brain. Dis Model Mech 2012, 5(1):125-140.
- [48]Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ: Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 1998, 273(45):29607-29614.
- [49]Heron SE, Dibbens LM: Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet 2013, 50(3):133-139.
- [50]Miyake S, Yamashita T, Taniguchi M, Tamatani M, Sato K, Tohyama M: Identification and characterization of a novel mitochondrial tricarboxylate carrier. Biochem Biophys Res Commun 2002, 295(2):463-468.
- [51]Yano M, Kanazawa M, Terada K, Takeya M, Hoogenraad N, Mori M: Functional analysis of human mitochondrial receptor Tom20 for protein import into mitochondria. J Biol Chem 1998, 273(41):26844-26851.
- [52]Hachiya N, Mihara K, Suda K, Horst M, Schatz G, Lithgow T: Reconstitution of the initial steps of mitochondrial protein import. Nature 1995, 376(6542):705-709.
- [53]Schleiff E, Shore GC, Goping IS: Interactions of the Human Mitochondrial Protein Import Receptor, hTom20, with Precursor Proteins in Vitro Reveal Pleiotropic Specificities and Different Receptor Domain Requirements. J Biol Chem 1997, 272(28):17784-17789.
- [54]An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT: Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A 2006, 103(16):6212-6217.
- [55]Kwon YT, Balogh SA, Davydov IV, Kashina AS, Yoon JK, Xie Y, Gaur A, Hyde L, Denenberg VH, Varshavsky A: Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol Cell Biol 2000, 20(11):4135-4148.
- [56]Balogh SA, Kwon YT, Denenberg VH: Varying intertrial interval reveals temporally defined memory deficits and enhancements in NTAN1-deficient mice. Learn Mem 2000, 7(5):279-286.
- [57]Lyons MR, West AE: Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011, 94(3):259-295.
- [58]Sugo N, Oshiro H, Takemura M, Kobayashi T, Kohno Y, Uesaka N, Song W-J, Yamamoto N: Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 2010, 31(9):1521-1532.
- [59]Redmond L, Hockfield S, Morabito MA: The Divergent Homeobox Gene PBX1 Is Expressed in the Postnatal Subventricular Zone and Interneurons of the Olfactory Bulb. J Neurosci 1996, 16(9):2972-2982.
- [60]Sgado P, Ferretti E, Grbec D, Bozzi Y, Simon HH: The atypical homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic dopaminergic neurons. Neural Dev 2012, 7:24. BioMed Central Full Text
- [61]Nestadt G, Wang Y, Grados MA, Riddle MA, Greenberg BD, Knowles JA, Fyer AJ, McCracken JT, Rauch SL, Murphy DL, Rasmussen SA, Cullen B, Piacentini J, Geller D, Pauls D, Bienvenu OJ, Chen Y, Liang KY, Goes FS, Maher B, Pulver AE, Shugart YY, Valle D, Samuels JF, Chang YC: Homeobox genes in obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 2012, 159B(1):53-60.
- [62]Heinritz W, Zweier C, Froster UG, Strenge S, Kujat A, Syrbe S, Rauch A, Schuster V: A missense mutation in the ZFHX1B gene associated with an atypical Mowat–Wilson syndrome phenotype. Am J Med Genet A 2006, 140A(11):1223-1227.
- [63]Warner LE, Mancias P, Butler IJ, McDonald CM, Keppen L, Koob KG, Lupski JR: Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 1998, 18(4):382-384.
- [64]Toba S, Hirotsune S: A unique role of dynein and nud family proteins in corticogenesis. Neuropathology 2012, 32(4):432-439.
- [65]Sakurai T: The role of NrCAM in neural development and disorders—Beyond a simple glue in the brain. Mol Cell Neurosci 2012, 49(3):351-363.
- [66]Gottmann K, Mittmann T, Lessmann V: BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 2009, 199(3-4):203-234.
- [67]Singh B, Henneberger C, Betances D, Arevalo MA, Rodríguez-Tébar A, Meier JC, Grantyn R: Altered Balance of Glutamatergic/GABAergic Synaptic Input and Associated Changes in Dendrite Morphology after BDNF Expression in BDNF-Deficient Hippocampal Neurons. J Neurosci 2006, 26(27):7189-7200.
- [68]Schlame M, Rua D, Greenberg ML: The biosynthesis and functional role of cardiolipin. Prog Lipid Res 2000, 39(3):257-288.
- [69]Petrosillo G, Matera M, Casanova G, Ruggiero FM, Paradies G: Mitochondrial dysfunction in rat brain with aging: Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 2008, 53(5):126-131.
- [70]Wang X, Bao X, Pal R, Agbas A, Michaelis EK: Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genomics 2010, 11:360. BioMed Central Full Text
- [71]Saxena S, Cabuy E, Caroni P: A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 2009, 12(5):627-636.
- [72]Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008, 22(11):1427-1438.
- [73]Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, Rechsteiner M: A Protein Interaction Network for Ecm29 Links the 26 S Proteasome to Molecular Motors and Endosomal Components. J Biol Chem 2010, 285(41):31616-31633.
- [74]de Pril R, Fischer DF, Roos RAC, van Leeuwen FW: Ubiquitin-conjugating enzyme E2-25 K increases aggregate formation and cell death in polyglutamine diseases. Mol Cell Neurosci 2007, 34(1):10-19.
- [75]Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O’Rourke B: Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res 2012, 111(4):446-454.
- [76]Wallace Michael L, Burette Alain C, Weinberg Richard J, Philpot Benjamin D: Maternal Loss of Ube3a Produces an Excitatory/Inhibitory Imbalance through Neuron Type-Specific Synaptic Defects. Neuron 2012, 74(5):793-800.
- [77]Rines AK, Bayeva M, Ardehali H: A new pROM king for the mitoK(ATP) dance: ROMK takes the lead. Circ Res 2012, 111(4):392-393.
- [78]Patrick GN: Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system. Curr Opin Neurobiol 2006, 16(1):90-94.
- [79]Hamilton AM, Zito K: Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis. Neural Plast 2013, 2013:10.
- [80]Xu GP, Dave KR, Vivero R, Schmidt-Kastner R, Sick TJ, Perez-Pinzon MA: Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 2002, 952(2):153-158.
- [81]Sarabi AS, Shen H, Wang Y, Hoffer BJ, Backman CM: Gene expression patterns in mouse cortical penumbra after focal ischemic brain injury and reperfusion. J Neurosci Res 2008, 86(13):2912-2924.
- [82]Wojtovich AP, Williams DM, Karcz MK, Lopes CM, Gray DA, Nehrke KW, Brookes PS: A novel mitochondrial K(ATP) channel assay. Circ Res 2010, 106(7):1190-1196.
- [83]Kaufman RJ, Back SH, Song B, Han J, Hassler J: The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum, prevent oxidative stress and preserve differentiation in beta-cells. Diabetes Obes Metab 2010, 12(Suppl 2):99-107.
- [84]Qiu XB, Markant SL, Yuan J, Goldberg AL: Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J 2004, 23(4):800-810.
- [85]Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T: A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 1999, 264(3):847-854.
- [86]Bayat V, Thiffault I, Jaiswal M, Tetreault M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire MJ, Mathieu J, Vanasse M, Bouchard JP, Rioux MF, Lourenco CM, Li Z, Haueter C, Shoubridge EA, Graham BH, Brais B, Bellen HJ: Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol 2012, 10(3):e1001288.
- [87]Katz C, Zaltsman-Amir Y, Mostizky Y, Kollet N, Gross A, Friedler A: Molecular basis of the interaction between proapoptotic truncated BID (tBID) protein and mitochondrial carrier homologue 2 (MTCH2) protein: key players in mitochondrial death pathway. J Biol Chem 2012, 287(18):15016-15023.
- [88]Kis B, Nagy K, Snipes JA, Rajapakse NC, Horiguchi T, Grover GJ, Busija DW: The mitochondrial KATP channel opener BMS-191095 induces neuronal preconditioning. Neuroreport 2004, 15(2):345-349.
- [89]Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A: Neuroinflammation and ageing: current theories and an overview of the data. Rev Recent Clin Trials 2011, 6(3):189-203.
- [90]Zeier Z, Madorsky I, Xu Y, Ogle WO, Notterpek L, Foster TC: Gene expression in the hippocampus: regionally specific effects of aging and caloric restriction. Mech Ageing Dev 2011, 132(1–2):8-19.
- [91]Navarro A, Sánchez Del Pino MJ, Gómez C, Peralta JL, Boveris A: Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 2002, 282(4):R985-R992.
- [92]Boveris A, Navarro A: Brain mitochondrial dysfunction in aging. IUBMB Life 2008, 60(5):308-314.
- [93]Trifunovic A, Larsson NG: Mitochondrial dysfunction as a cause of ageing. J Intern Med 2008, 263(2):167-178.
- [94]Van Laar VS, Berman SB: The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis 2013, 51:43-55.
- [95]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193.
- [96]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121.
- [97]Baldi P, Long AD: A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 2001, 17(6):509-519.
- [98]Leek JT, Monsen E, Dabney AR, Storey JD: EDGE: extraction and analysis of differential gene expression. Bioinformatics 2006, 22(4):507-508.
- [99]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.