期刊论文详细信息
BMC Genomics
Microarray analysis of the Escherichia coli response to CdTe-GSH Quantum Dots: understanding the bacterial toxicity of semiconductor nanoparticles
José M Pérez-Donoso7  Desiré A Lopez3  Thomas G Chasteen3  Claudio C Vásquez8  Iván L Calderón1  Paulina F Calderón1  Denisse Bravo5  David E Loyola8  Felipe A Venegas2  Nicolás Órdenes-Aenishanslins6  Vicente Durán-Toro6  Luis A Saona6  Gonzalo A Pradenas2  Roberto C Molina-Quiroz8  Bernardo Collao4  Juan P Monrás2 
[1] Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile;Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile;Department of Chemistry and Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, Texas 77340, USA;Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Santiago, Chile;Facultad de Odontología, Universidad de Chile, Santiago, Chile;Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile;Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile;Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
关键词: Nanoparticles;    Cadmium;    Oxidative stress;    Transcriptomic response;    Toxicity mechanism;   
Others  :  1127354
DOI  :  10.1186/1471-2164-15-1099
 received in 2014-07-17, accepted in 2014-11-26,  发布年份 2014
PDF
【 摘 要 】

Background

Most semiconductor nanoparticles used in biomedical applications are made of heavy metals and involve synthetic methods that require organic solvents and high temperatures. This issue makes the development of water-soluble nanoparticles with lower toxicity a major topic of interest. In a previous work our group described a biomimetic method for the aqueous synthesis of CdTe-GSH Quantum Dots (QDs) using biomolecules present in cells as reducing and stabilizing agents. This protocol produces nanoparticles with good fluorescent properties and less toxicity than those synthesized by regular chemical methods. Nevertheless, biomimetic CdTe-GSH nanoparticles still display some toxicity, so it is important to know in detail the effects of these semiconductor nanoparticles on cells, their levels of toxicity and the strategies that cells develop to overcome it.

Results

In this work, the response of E. coli exposed to different sized-CdTe-GSH QDs synthesized by a biomimetic protocol was evaluated through transcriptomic, biochemical, microbiological and genetic approaches. It was determined that: i) red QDs (5 nm) display higher toxicity than green (3 nm), ii) QDs mainly induce expression of genes involved with Cd+2 stress (zntA and znuA) and tellurium does not contribute significantly to QDs-mediated toxicity since cells incorporate low levels of Te, iii) red QDs also induce genes related to oxidative stress response and membrane proteins, iv) Cd2+ release is higher in red QDs, and v) QDs render the cells more sensitive to polymyxin B.

Conclusion

Based on the results obtained in this work, a general model of CdTe-GSH QDs toxicity in E. coli is proposed. Results indicate that bacterial toxicity of QDs is mainly associated with cadmium release, oxidative stress and loss of membrane integrity. The higher toxicity of red QDs is most probably due to higher cadmium content and release from the nanoparticle as compared to green QDs. Moreover, QDs-treated cells become more sensitive to polymyxin B making these biomimetic QDs candidates for adjuvant therapies against bacterial infections.

【 授权许可】

   
2014 Monrás et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220121434900.pdf 1241KB PDF download
Figure 5. 82KB Image download
Figure 4. 78KB Image download
Figure 3. 48KB Image download
Figure 2. 64KB Image download
Figure 1. 91KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson O, Weller H: CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 2006, 108:18826-18831.
  • [2]Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmüller A, Rakovich YP, Donegan JF: Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C 2007, 111:14628-14637.
  • [3]Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K: Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004, 4:2163-2169.
  • [4]Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H: Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem Vol B 2002, 106:7177-7185.
  • [5]Bimberg D: Quantum dot based nanophotonics and nanoelectronics. Electron Lett 2008, 44:168-171.
  • [6]Medintz IL, Uyeda HT, Goldman ER, Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005, 4:435-446.
  • [7]Zheng Y, Gao S, Ying JY: Synthesis and cell-imaging applications of glutathione-capped CdTe Quantum Dots. Adv Mater 2007, 19:376-380.
  • [8]Rakovich A, Rakovich T, Kelly V, Lesnyak V, Eychmüller A, Rakovich YP, Donegan JF: Photosensitizer methylene blue-semiconductor nanocrystals hybrid system for photodynamic therapy. J Nanosci Nanotechnol 2010, 10:2656-2662.
  • [9]Xue M, Wang X, Wang H, Tang B: The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta 2011, 83:1680-1686.
  • [10]Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Zhang X, Tai R, Fan C: The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33:1238-1244.
  • [11]Zhang H, Wang D, Möhwald H: Ligand-selective aqueous synthesis of one-dimensional CdTe nanostructures. Angew Chem Int Ed 2006, 45:748-751.
  • [12]Silva FO, Carvalho MS, Mendonça R, Macedo WA, Balzuweit K, Reiss P, Schiavon MA: Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Res Lett 2012, 7:1-10. BioMed Central Full Text
  • [13]Kouassi GK, Irudayaraj J: Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal Chem 2006, 78:3234-3241.
  • [14]Zhang Y, So MK, Loening AM, Yao H, Gambhir SS, Rao J: HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Angew Chem Int Ed 2006, 45:4936-4940.
  • [15]Park S, Chibli H, Wong J, Nadeau JL: Antimicrobial activity and cellular toxicity of nanoparticle–polymyxin B conjugates. Nanotechnology 2011, 22:185101.
  • [16]Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed-Nanotechnol 2007, 3:168-171.
  • [17]Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M: Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 2011, 9:1035-1052.
  • [18]Murugan S, Paulpandian P: Synergistic antibacterial evaluation of commercial antibiotics combined with nanoiron against human pathogens. Int J Pharm Sci Rev Res 2013, 18:183-190.
  • [19]Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF: Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 2006, 6:800-808.
  • [20]Yang Y, Mathieu JM, Chattopadhyay S, Miller JT, Wu T, Shibata T, Guo W, Alvarez PJ: Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano 2012, 6:6091-6098.
  • [21]Simon DF, Domingos RF, Hauser C, Hutchins CM, Zerges W, Wilkinson KJ: Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 2013, 79:4774-4785.
  • [22]Lovrić J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D: Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005, 83:377-385.
  • [23]Fang TT, Li X, Wang QS, Zhang ZJ, Liu P, Zhang CC: Toxicity evaluation of CdTe quantum dots with different size on Escherichia coli. Toxicol in Vitro 2012, 26:1233-1239.
  • [24]Shiohara A, Hoshino A, Hanaki KI, Suzuki K, Yamamoto K: On the cytotoxicity caused by Quantum Dots. Microbiol Immunol 2004, 48:669-675.
  • [25]Yang Y, Zhu H, Colvin VL, Alvarez PJ: Cellular and transcriptional response of Pseudomonas stutzeri to quantum dots under aerobic and denitrifying conditions. Environ Sci Tech 2011, 45(11):4988-4994.
  • [26]Mahendra S, Zhu H, Colvin VL, Alvarez PJ: Quantum dot weathering results in microbial toxicity. Environ Sci Technol 2008, 42:9424-9430.
  • [27]Lu Z, Li CM, Bao H, Qiao Y, Bao Q: Photophysical mechanism for quantum dots-induced bacterial growth inhibition. J Nanosci Nanotechnol 2009, 9:3252-3255.
  • [28]Dumas EM, Ozenne V, Mielke RE, Nadeau JL: Toxicity of CdTe quantum dots in bacterial strains. IEEE T Nanobiosci 2009, 8:58-64.
  • [29]Schneider R, Wolpert C, Guilloteau H, Balan L, Lambert J, Merlin C: The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotoxicity. Nanotechnology 2009, 20:225101.
  • [30]Wang L, Zheng H, Long Y, Gao M, Hao J, Du J, Mao X, Zhou D: Rapid determination of the toxicity of quantum dots with luminous bacteria. J Hazard Mater 2010, 177:1134-1137.
  • [31]Dumas E, Gao C, Suffern D, Bradforth SE, Dimitrijevic NM, Nadeau JL: Interfacial charge transfer between CdTe quantum dots and gram negative vs gram positive bacteria. Environ Sci Technol 2010, 44:1464-1470.
  • [32]Wang Q, Fang T, Liu P, Min X, Li X: Study of the bioeffects of CdTe quantum dots on Escherichia coli cells. J Colloid Interf Sci 2011, 363:476-480.
  • [33]Luo Z, Wu Q, Zhang M, Li P, Ding Y: Cooperative antimicrobial activity of CdTe quantum dots with rocephin and fluorescence monitoring for Escherichia coli. J Colloid Interf Sci 2011, 362:100-106.
  • [34]Yang Y, Zhu H, Colvin VL, Alvarez PJ: Cellular and transcriptional response of Pseudomonas stutzeri to quantum dots under aerobic and denitrifying conditions. Environ Sci Technol 2011, 45:4988-4994.
  • [35]Pokhrel LR, Silva T, Dubey B, El Badawy AM, Tolaymat TM, Scheuerman PR: Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Sci Total Environ 2012, 426:414-422.
  • [36]Lai L, Lin C, Xiao CQ, Xu ZQ, Han XL, Fu L, Li DW, Mei P, Jiang FL, Guo QL, Liu Y: Adhesion of quantum dots-induced membrane damage of Escherichia coli. J Colloid Interf Sci 2013, 389:61-70.
  • [37]Kauffer FA, Merlin C, Balan L, Schneider R: Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots. J Hazard Mater 2014, 268:246-255.
  • [38]Díaz V, Ramírez-Maureira M, Monrás JP, Vargas J, Bravo D, Osorio-Román IO, Vásquez CC, Pérez-Donoso JM: Spectroscopic properties and biocompatibility studies of CdTe Quantum Dots capped with biological thiols. Sci Adv Mater 2012, 4:1-8.
  • [39]Pérez-Donoso JM, Monrás JP, Bravo D, Aguirre A, Quest AF, Osorio-Román IO, Aroca RF, Chasteen TG, Vásquez CC: Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PloS one 2012, 7:e30741.
  • [40]Gautier JL, Monrás JP, Osorio-Román IO, Vásquez CC, Bravo D, Herranz T, Marco JF, Pérez-Donoso JM: Surface characterization of GSH-CdTe quantum dots. Mater Chem Phys 2013, 140:113-118.
  • [41]Wang A, Crowley DE: Global gene expression responses to cadmium toxicity in Escherichia coli. J Bacteriol 2005, 187:3259-3266.
  • [42]Schmidt R, Zahn R, Bukau B, Mogk A: ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol 2009, 72:506-517.
  • [43]Doyle SM, Wickner S: Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 2009, 34:40-48.
  • [44]Dougan DA, Mogk A, Bukau B: Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 2002, 59:1607-1616.
  • [45]Stewart EJ, Aslund F, Beckwith J: Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 1998, 17:5543-5550.
  • [46]Carmel-Harel O, Storz G: Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2000, 54:439-461.
  • [47]Rollin-Genetet F, Berthomieu C, Davin AH, Quemeneur E: Escherichia coli thioredoxin inhibition by cadmium. Eur J Biochem 2004, 271:1299-1309.
  • [48]Chou JH, Greenberg JT, Demple B: Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993, 175:1026-1031.
  • [49]Echave P, Tamarit J, Cabiscol E, Ros J: Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J BiolChem 2003, 278:30193-30198.
  • [50]Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL: Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 2004, 11:1206-1214.
  • [51]Guisbert E, Rhodius VA, Ahuja N, Witkin E, Gross CA: Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol 2007, 189:1963-1973.
  • [52]Alekshun MN, Levy SB: The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999, 7:410-413.
  • [53]Kanai T, Takahashi K, Inoue H: Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. J Biochem 2006, 140:703-711.
  • [54]Bochner BR, Lee PC, Wilson SW, Cutler CW, Ames BN: AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 1984, 37:225-232.
  • [55]Imlay JA: Pathways of oxidative damage. Annu Rev Microbiol 2003, 57:395-418.
  • [56]Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G: Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A 2010, 107:14390-14395.
  • [57]Hussain H, Grove J, Griffiths L, Busby S, Cole J: A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol 1994, 12:153-163.
  • [58]Bitoun JP, Wu G, Ding H: Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress. Biometals 2008, 21:693-703.
  • [59]Andrae U, Singh J, Ziegler-Skylakakis K: Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett 1985, 282:93-98.
  • [60]Kovalenko TN, Ushakova GA, Osadchenko I, Skibo GG, Pierzynowski SG: The neuroprotective effect of 2-oxoglutarate in the experimental ischemia of hippocampus. J Physiol Pharmacol 2011, 62:239-246.
  • [61]Rensing C, Mitra B, Rosen BP: The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 1997, 94:14326-14331.
  • [62]Ciavardelli D, Ammendola S, Ronci M, Consalvo A, Marzano V, Lipoma M, Sacchetta P, Federici G, Di Llio C, Battistoni A, Urbani A: Phenotypic profile linked to inhibition of the major Zn influx system in Salmonella enterica: proteomics and ionomics investigations. Mol Biosyst 2011, 7:608-619.
  • [63]Chvapil M: New aspects in the biological role of zinc: a stabilizer of macromolecules and biological membranes. Life Sci 1973, 13:1041-1049.
  • [64]Sugarman B: Zinc and infection. Clin Infect Dis 1983, 5:137-147.
  • [65]Shankar AH, Prasad AS: Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 1998, 68:447S-463S.
  • [66]Helbig K, Grosse C, Nies DH: Cadmium toxicity in glutathione mutants of Escherichia coli. J Bacteriol 2008, 190:5439-5454.
  • [67]Morales EH, Calderón IL, Collao B, Gil F, Porwollik S, McClelland M, Saavedra CP: Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA. BMC Microbiol 2012, 12:63. BioMed Central Full Text
  • [68]Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC: Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 2009, 33:820-832.
  • [69]Makui H, Roig E, Cole ST, Helmann JD, Gros P, Celler MF: Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 2000, 35:1065-1078.
  • [70]Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction ofEscherichia coliK-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006. [Online] Available at: http://onlinelibrary.wiley.com/doi/10.1038/msb4100050/full webcite. Accessed on 27 June 2014
  • [71]Yamamoto K, Ishihama A: Transcriptional response of Escherichia coli to external copper. Mol Microbiol 2005, 56:215-227.
  • [72]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothom T, Huber W, Lacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tiemey L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [73]Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK: A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007, 23:2700-2707.
  • [74]Smyth GK: Speed, TP Normalization of cDNA microarray data. Methods 2003, 31:265-273.
  • [75]Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Flucher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD: EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 2011, 39:D583-D590.
  • [76]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:e45.
  • [77]Montes RA, Pradenas GA, Pérez-Donoso JM, Vásquez CC, Chasteen TG: The acute bacterial toxicity of the selenocyanate anion and the bioprocessing of selenium by bacterial cells. Environ Biotech 2012, 8:32-38.
  文献评价指标  
  下载次数:13次 浏览次数:8次