BMC Medical Genetics | |
Genetic and functional evidence for a locus controlling otitis media at chromosome 10q26.3 | |
Sarra E Jamieson1  Jenefer M Blackwell1  Craig E Pennell3  Richard W Francis1  Harvey L Coates4  Shyan Vijayasekaran4  Ruth B Thornton2  Elizabeth SH Scaman1  Marie S Rye1  | |
[1] Telethon Institute for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia;School of Paediatrics and Child Health, University of Western Australia, Perth, Australia;School of Women’s and Infants’ Health, University of Western Australia, Perth, Australia;Department of Otolaryngology, Head and Neck Surgery, University of Western Australia, Perth, Western Australia, Australia | |
关键词: Australia; WAFSOM; Raine study; Association; Linkage; Genetic polymorphisms; Otitis media with effusion; Acute otitis media; | |
Others : 1122514 DOI : 10.1186/1471-2350-15-18 |
|
received in 2012-10-18, accepted in 2014-01-21, 发布年份 2014 | |
【 摘 要 】
Background
Otitis media (OM) is a common childhood disease characterised by middle ear effusion and inflammation. Susceptibility to recurrent acute OM and chronic OM with effusion is 40-70% heritable. Linkage studies provide evidence for multiple putative OM susceptibility loci. This study attempts to replicate these linkages in a Western Australian (WA) population, and to identify the etiological gene(s) in a replicated region.
Methods
Microsatellites were genotyped in 468 individuals from 101 multicase families (208 OM cases) from the WA Family Study of OM (WAFSOM) and non-parametric linkage analysis carried out in ALLEGRO. Association mapping utilized dense single nucleotide polymorphism (SNP) data extracted from Illumina 660 W-Quad analysis of 256 OM cases and 575 controls from the WA Pregnancy Cohort (Raine) Study. Logistic regression analysis was undertaken in ProbABEL. RT-PCR was used to compare gene expression in paired adenoid and tonsil samples, and in epithelial and macrophage cell lines. Comparative genomics methods were used to identify putative regulatory elements and transcription factor binding sites potentially affected by associated SNPs.
Results
Evidence for linkage was observed at 10q26.3 (Zlr = 2.69; P = 0.0036; D10S1770) with borderline evidence for linkage at 10q22.3 (Zlr = 1.64; P = 0.05; D10S206). No evidence for linkage was seen at 3p25.3, 17q12, or 19q13.43. Peak association at 10q26.3 was in the intergenic region between TCERG1L and PPP2R2D (rs7922424; P = 9.47 × 10-6), immediately under the peak of linkage. Independent associations were observed at DOCK1 (rs9418832; P = 7.48 × 10-5) and ADAM12 (rs7902734; P = 8.04 × 10-4). RT-PCR analysis confirmed expression of all 4 genes in adenoid samples. ADAM12, DOCK1 and PPP2R2D, but not TCERG1L, were expressed in respiratory epithelial and macrophage cell lines. A significantly associated polymorphism (rs7087384) in strong LD with the top SNP (rs7922424; r2 = 0.97) alters a transcription factor binding site (CREB/CREBP) in the intergenic region between TCERG1L and PPP2R2D.
Conclusions
OM linkage was replicated at 10q26.3. Whilst multiple genes could contribute to this linkage, the weight of evidence supports PPP2R2D, a TGF-β/Activin/Nodal pathway modulator, as the more likely functional candidate lying immediately under the linkage peak for OM susceptibility at chromosome 10q26.3.
【 授权许可】
2014 Rye et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150214021212845.pdf | 3639KB | download | |
Figure 3. | 161KB | Image | download |
Figure 2. | 268KB | Image | download |
Figure 1. | 108KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Rovers MM, Schilder AGM, Zielhuis GA, Rosenfeld RM: Otitis media. Lancet 2004, 363:465-473.
- [2]Kong K, Coates HLC: Natural history, definitions, risk factors and burden of otitis media. Med J Aust 2009, 191:S39-S43.
- [3]Kvaerner KJ, Tambs K, Harris JR, Magnus P: Distribution and heritability of reccurent ear infections. Ann Otol Rhinol Laryngol 1997, 106(8):624-632.
- [4]Casselbrant M, Mandel EM, Fall PA, Rockette HE, Kurs-Lasky M, Bluestone CD, Ferrell RE: The heritability of otitis media: a twin and triplet study. JAMA 1999, 282(22):2125-2130.
- [5]Rovers M, Haggard M, Gannon M, Koeppen-Schomerus G, Plomin R: Heritability of symptom domains in otitis media: a longitudinal study of 1,373 twin pairs. Am J Epidemiol 2002, 155(10):958-964.
- [6]Daly KA, Brown WM, Segade F, Bowden DW, Keats BJ, Lindgren BR, Levine SC, Rich SS: Chronic and recurrent otitis media: a genome scan for susceptibility loci. Am J Hum Genet 2004, 75:988-997.
- [7]Casselbrant ML, Mandel EM, Jung J, Ferrell RE, Tekely K, Szatkiewicz JP, Ray A, Weeks DE: Otitis media: a genome-wide linkage scan with evidence of susceptibility loci within the 17q12 and 10q22.3 regions. BMC Med Genet 2009, 10:85.
- [8]Chen W-M, Allen EK, Mychaleckyj JC, Chen F, Hou X, Rich SS, Daly KA, Sale MM: Significant linkage at chromosome 19q for otitis media with effusion and/or recurrent otitis media (COME/ROM). BMC Med Genet 2011, 12(1):124. BioMed Central Full Text
- [9]Rye MS, Wiertsema SP, Scaman ESH, Oommen J, Sun W, Coates HL, Vijayasekaran S, Francis RW, Ang W, Pennell CE, et al.: FBXO11, a regulator of the TGFβ pathway, is associated with severe otitis media in Western Australian children. Genes Immun 2011, 12(5):352-359.
- [10]Newnham JP, Evans SF, Michael CA, Stanley FJ, Landau LI: Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet 1993, 342:887-891.
- [11]Rye MS, Warrington NM, Scaman ESH, Vijayasekaran S, Coates HL, Anderson D, Pennell CE, Blackwell JM, Jamieson SE: Genome-wide association study to identify the genetic determinants of otitis media susceptibility in childhood. PLoS One 2012, 7(10):e48215.
- [12]Matise TC, Chen FCW, De La Vega FM, Hansen M, He C, Hyland FCL, Kennedy GC, Kong X, Murray SS, Ziegle JS, et al.: A second-generation combined linkage-physical map of the human genome. Genome Res 2007, 17(12):1783-1786.
- [13]Li Y, Willer CJ, Sanna S, Abecasis GR: Genotype imputation. Annu Rev Genomics Hum Genet 2009, 10:387-406.
- [14]Teo YY: Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol 2008, 19(2):133-143.
- [15]Korbie DJ, Mattick JS: Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 2008, 3:1452-1456.
- [16]O’Connell JR, Weeks DE: PedCheck: a program for identifying marker typing incompatibilities in linkage analysis. Am J Hum Genet 1998, 10:A288.
- [17]Freathy RM, Mook-Kanamori DO, Sovio U, Prokopenko I, Timpson NJ, Berry DJ, Warrington NM, Widen E, Hottenga JJ, Kaakinen M, et al.: Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet 2010, 42(5):430-435.
- [18]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al.: PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007, 81:559-575.
- [19]Gudbjartsson DF, Jonasson K, Frigge ML, Kong A: Allegro, a new computer program for multipoint linkage analysis. Nat Genet 2000, 25(1):12-13.
- [20]Aulchenko YS, Struchalin MV, van Duijn CM: ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 2010, 11:134. BioMed Central Full Text
- [21]Skol AD, Scott LJ, Abecasis GR, Boehnke M: Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006, 38:209-213.
- [22]R: A Language and Environment for Statistical Computing. http://www.R-project.org webcite
- [23]Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ: LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010, 26(18):2336-2337.
- [24]Chomczynski P: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993, 15(3):532-537.
- [25]de Jonge HJ, Fehrmann RS, Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A: Evidence based selection of housekeeping genes. PLoS One 2007, 2(9):e898.
- [26]Brudno M, Chapman M, Gottgens B, Batzoglou S, Morgenstern B: Fast and sensitive multiple alignment of large genomic sequences. BMC Bioinformatics 2003, 4:66. BioMed Central Full Text
- [27]Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S: LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 2003, 13(4):721-731.
- [28]Gottgens B, Gilbert JG, Barton LM, Grafham D, Rogers J, Bentley DR, Green AR: Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res 2001, 11(1):87-97.
- [29]Grabe N: AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol 2002, 2(1):S1-S15.
- [30]Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995, 23(23):4878-4884.
- [31]RepeatMasker Open-3.0. http://www.repeatmasker.org webcite
- [32]Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002, 99(6):3740-3745.
- [33]Larsen F, Gundersen G, Lopez R, Prydz H: CpG islands as gene markers in the human genome. Genomics 1992, 13(4):1095-1107.
- [34]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.
- [35]Weeks DE, Lathrop GM: Polygenic disease: methods for mapping complex disease traits. Trends Genet 1995, 11(12):513-519.
- [36]Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajarvi R, Kokko-Sahin ML, Ekelund J, Lonnqvist J, Peltonen L: Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q in a population-based sampled Finnish family set. Mol Psychiatry 1998, 3(5):452-457.
- [37]Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS: Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999, 65(3):876-884.
- [38]van den Aardweg MT, Schilder AG, Herkert E, Boonacker CW, Rovers MM: Adenoidectomy for otitis media in children. Cochrane Database Syst Rev 2010, 1:CD007810.
- [39]Kadhim AL, Spilsbury K, Semmens JB, Coates HL, Lannigan FJ: Adenoidectomy for middle ear effusion: a study of 50,000 children over 24 years. Laryngoscope 2007, 117(3):427-433.
- [40]Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci 2009, 106(23):9362-9367.
- [41]Mori S, Tanaka M, Nanba D, Nishiwaki E, Ishiguro H, Higashiyama S, Matsuura N: PACSIN3 binds ADAM12/meltrin alpha and up-regulates ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J Biol Chem 2003, 278(46):46029-46034.
- [42]Cho J-G, Woo J-S, Lee H-M, Jung HH, Hwang S-J, Chae S: Effects of cigarette smoking on mucin production in human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol 2009, 73(10):1447-1451.
- [43]Galliano M-F, Huet C, Frygelius J, Polgren A, Wewer UM, Engvall E: Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J Biol Chem 2000, 275:13933-13939.
- [44]Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M: DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol 1996, 16(4):1770-1776.
- [45]Gumienny TL, Brugnera E, Tosello-Trampont A-C, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, et al.: CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis andCell Migration. Cell 2001, 107(1):27-41.
- [46]Laurin M, Fradet N, Blangy A, Hall A, Vuori K, Cote J-F: The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc Natl Acad Sci 2008, 105(40):15446-15451.
- [47]Chen G, Bentley A, Adeyemo A, Shriner D, Zhou J, Doumatey A, Huang H, Ramos E, Erdos M, Gerry N, et al.: Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet 2012, 21:4530-4536.
- [48]Neale BM, Medland S, Ripke S, Anney RJL, Asherson P, Buitelaar J, Franke B, Gill M, Kent L, Holmans P, et al.: Case–control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010, 49(9):906-920.
- [49]Yi J, Dhir M, Guzzetta A, Iacobuzio-Donahue C, Heo K, Yang K, Suzuki H, Toyota M, Kim H-M, Ahuja N: DNA methylation biomarker candidates for early detection of colon cancer. Tumor Biology 2012, 33(2):363-372.
- [50]Thierry-Mieg D, Thierry-Mieg J: AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 2006, 7(Supp 1):S12.
- [51]Strack S, Chang D, Zaucha JA, Colbran RJ, Wadzinski BE: Cloning and characterization of Bδ, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett 1999, 460(3):462-466.
- [52]Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M: Two highly related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling. Development 2008, 135(17):2927-2937.
- [53]Atchley WR, Fitch WM: A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 1997, 94:5172-5176.
- [54]Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M: Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci U S A 1998, 95(7):3758-3763.
- [55]Chen WG, West AE, Tao X, Corfas G, Szentirmay MN, Szentirmay MN, Sawadogo M, Vinson C, Greenberg C: Upstream stimulatory factors are mediators of ca2 + −responsive transcription in neurons. J Neurosci 2003, 23(7):2572-2581.
- [56]Qyang Y, Luo X, Lu T, Ismail PM, Krylov D, Vinson C, Sawadogo MI: Cell-type-dependent activity of the ubiquitous transcription factor usf in cellular proliferation and transcriptional activation. Mol Cell Biol 1999, 19(2):1508-1517.
- [57]Alliston T, Ko TC, Cao Y, Feng X-H, Chang C, Derynck R: Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J Biol Chem 2005, 280(25):24227-24237.
- [58]Parkinson N, Hardisty-Hughes RE, Tateossian H, Tsai H-T, Brooker D, Morse S, Lalane Z, MacKenzie F, Fray M, Glenister P, et al.: Mutation at the evi1 locus in junbo mice causes susceptibility to otitis media. PLoS Genet 2006, 2(10):e149.
- [59]Sale MM, Chen W-M, Weeks DE, Mychaleckyj JC, Hou X, Marion M, Segade F, Casselbrant ML, Mandel EM, Ferrell RE, et al.: Evaluation of 15 Functional Candidate Genes for Association with Chronic Otitis Media with Effusion and/or Recurrent Otitis Media (COME/ROM). PLoS One 2011, 6(8):e22297.