BMC Systems Biology | |
CBFA: phenotype prediction integrating metabolic models with constraints derived from experimental data | |
Miguel Rocha2  Isabel Rocha2  Jean-François Tomb3  Marcellinus Pont3  Paulo Vilaça1  Paulo Maia1  Pedro Evangelista1  Rafael Carreira1  | |
[1] SilicoLife, Lda, Rua do Canastreiro 15, Braga, Portugal;Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal;E.I. DuPont De Nemours & Co., Inc, Wilmington, DE, USA | |
关键词: Open-source software; Metabolic engineering; Metabolic Flux analysis; Constraint-based modeling; | |
Others : 1091410 DOI : 10.1186/s12918-014-0123-1 |
|
received in 2014-06-30, accepted in 2014-10-16, 发布年份 2014 | |
【 摘 要 】
Background
Flux analysis methods lie at the core of Metabolic Engineering (ME), providing methods for phenotype simulation that allow the determination of flux distributions under different conditions. Although many constraint-based modeling software tools have been developed and published, none provides a free user-friendly application that makes available the full portfolio of flux analysis methods.
Results
This work presents Constraint-based Flux Analysis (CBFA), an open-source software application for flux analysis in metabolic models that implements several methods for phenotype prediction, allowing users to define constraints associated with measured fluxes and/or flux ratios, together with environmental conditions (e.g. media) and reaction/gene knockouts. CBFA identifies the set of applicable methods based on the constraints defined from user inputs, encompassing algebraic and constraint-based simulation methods. The integration of CBFA within the OptFlux framework for ME enables the utilization of different model formats and standards and the integration with complementary methods for phenotype simulation and visualization of results.
Conclusions
A general-purpose and flexible application is proposed that is independent of the origin of the constraints defined for a given simulation. The aim is to provide a simple to use software tool focused on the application of several flux prediction methods.
【 授权许可】
2014 Carreira et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128171802714.pdf | 1702KB | download | |
Figure 4. | 64KB | Image | download |
Figure 3. | 94KB | Image | download |
Figure 2. | 93KB | Image | download |
Figure 1. | 63KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Nielsen J: Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng 1998, 58:125-132.
- [2]Future Prospects for Industrial Biotechnology. OECD Publishing, Paris, France; 2011.
- [3]Wiechert W: 13C metabolic flux analysis. Metab Eng 2001, 3:195-206.
- [4]Alm EJ, Huang KH, Price MN, Koche RP, Keller K, Dubchak IL, Arkin AP: The MicrobesOnline Web site for comparative genomics. Genome Res 2005, 15:1015-1022.
- [5]Sauer U: Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2006, 2:62.
- [6]Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010, 28:977-982.
- [7]Varma A, Palsson BO: Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 1994, 12:994-998.
- [8]Papoutsakis ET: Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 1984, 26:174-187.
- [9]Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001, 19:125-130.
- [10]Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119.
- [11]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5:264.
- [12]Christensen B, Nielsen J: Isotopomer analysis using GC-MS. Metab Eng 1999, 1:282-290.
- [13]Wiechert W, de Graaf AA: Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 1997, 55:101-117.
- [14]Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser RW, Szyperski T, Wüthrich K, Bailey JE: Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 1999, 181:6679-6688.
- [15]Fischer E, Sauer U: Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 2003, 270:880-891.
- [16]Klamt S, Stelling J, Ginkel M, Gilles ED: FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 2003, 19:261-269.
- [17]Zamboni N, Fischer E, Sauer U: FiatFlux–a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 2005, 6:209. BioMed Central Full Text
- [18]Quek L-E, Wittmann C, Nielsen LK, Krömer JO: OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 2009, 8:25. BioMed Central Full Text
- [19]Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke D, Palsson BO: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 2011, 6:1290-1307.
- [20]Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W: 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 2013, 29:143-145.
- [21]Klamt S, Saez-Rodriguez J, Gilles ED: Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 2007, 1:2. BioMed Central Full Text
- [22]Wright J, Wagner A: The systems biology research tool: evolvable open-source software. BMC Syst Biol 2008, 2:55. BioMed Central Full Text
- [23]Ravikirthi P, Suthers PF, Maranas CD: Construction of an E. Coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 2011, 108:1372-1382.
- [24]Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, Oja M, Holm L, Penttilä M, Rousu J, Arvas M: Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput Biol 2014, 10:e1003465.
- [25]McAnulty MJ, Yen JY, Freedman BG, Senger RS: Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 2012, 6:42. BioMed Central Full Text
- [26]Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto J, Nielsen J, Patil K, Ferreira E, Rocha M: OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 2010, 4:45. BioMed Central Full Text
- [27]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19:524-531.
- [28]Ausbrooks R, Buswell S, Carlisle D, Chavchanidze G, Dalmas S, Devitt S, Diaz A, Dooley S, Hunter R, Ion P, Kohlhase M, Lazrek A, Libbrecht P, Miller N, Miner R, Rowley C, Sargent M, Smith B, Soiffer N, Sutor R, Watt S: Mathematical Markup Language (MathML) Version 3.0.W3C recommendations, 2010:115-121
- [29]Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, König R, Smith RD, Palsson BO: Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010, 6:390.
- [30][http://www.gnu.org/software/glpk/] webcite Makhorin A: GNU Linear Programming Kit (GLPK).
- [31]Segre D, Vitkup D, Church GM: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 2002, 99:15112-15117.
- [32]Edwards JS, Palsson BO: Robustness analysis of the escherichiacoli metabolic network. Biotechnol Prog 2000, 16:927-939.
- [33]Förster J, Gombert AK, Nielsen J: A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 2002, 79:703-712.
- [34]Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4:R54. BioMed Central Full Text
- [35]Blank LM, Kuepfer L, Sauer U: Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 2005, 6:R49. BioMed Central Full Text
- [36]Fischer E, Zamboni N, Sauer U: High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Anal Biochem 2004, 325:308-316.