BMC Bioinformatics | |
An integrated network visualization framework towards metabolic engineering applications | |
Alberto Noronha2  Paulo Vilaça1  Miguel Rocha2  | |
[1] SilicoLife, Lda, Braga, Portugal | |
[2] Centre of Biological Engineering (CEB), School of Engineering, University of Minho, Campus de Gualtar, Braga, Portugal | |
关键词: Open-source software; Metabolic engineering; Metabolic network visualization; | |
Others : 1089679 DOI : 10.1186/s12859-014-0420-0 |
|
received in 2014-06-03, accepted in 2014-12-11, 发布年份 2014 | |
【 摘 要 】
Background
Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential.
Results
In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks.
Conclusions
The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.
【 授权许可】
2014 Noronha et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150127011505776.pdf | 1847KB | download | |
Figure 6. | 72KB | Image | download |
Figure 5. | 61KB | Image | download |
Figure 4. | 49KB | Image | download |
Figure 3. | 32KB | Image | download |
Figure 2. | 36KB | Image | download |
Figure 1. | 47KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Suderman M, Hallett M: Tools for visually exploring biological networks. Bioinformatics 2007, 23(20):2651-2659. Oxford Univ Press
- [2]Wiback SJ, Famili I, Greenberg HJ, Palsson BØ: Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J Theor Biol 2004, 228(4):437-447. Elsevier
- [3]MacNeil LT, Walhout AJ: Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res 2011, 21(5):645-657. Cold Spring Harbor Lab
- [4]Sauro HM and Kholodenko BN: Quantitative analysis of signaling networks.Prog Biophys Mol Bio 2004, 86(1):5–43. ISSN 0079-6107.
- [5]Gonçalves E, Bucher J, Ryll A, Niklas J, Mauch K, Klamt S, Rocha M, Saez-Rodriguezm J: Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol Biosyst 2013, 9(7):1576-1583.
- [6]Patil KR, Åkesson M, Nielsen J: Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol 2004, 15(1):64-69. Elsevier
- [7]Llaneras F, Picó J: Stoichiometric modelling of cell metabolism. J Biosci Bioeng 2008, 105(1):1-11. Elsevier
- [8]Ostergaard S, Olsson L, Nielsen J: Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2000, 64(1):34-50. Am Soc Microbiol
- [9]Stephanopoulos G, Aristidou AA, Nielsen J: Metabolic engineering: principles and methodologies.Academic Press, San Diego, CA, USA, 1998.
- [10]Ibarra RU, Edwards JS, Palsson BO: Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 2002, 420:186-189.
- [11]Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto J, Nielsen J, Patil K, Ferreira E, Rocha M: OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 2010, 4(1):45. BioMed Central Ltd BioMed Central Full Text
- [12]Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007, 2(3):727-738. Nature Publishing Group
- [13]Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011, 6(9):1290-1307. Nature Publishing Group
- [14]Klamt S, Saez-Rodriguez J, Gilles ED: Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 2007, 1:2. BioMed Central Full Text
- [15]Hoppe A, Homann S, Gerasch A, Gille C, Holzhutter HG: FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 2011, 12(1):28. BioMed Central Ltd BioMed Central Full Text
- [16]Funahashi A, Morohashi M, Kitano H, Tanimura N: Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 2003, 1(5):159-162. Elsevier
- [17]Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H: Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 2008, 96(8):1254-1265. IEEE
- [18]Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang P-L, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, et al.: Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007, 2(10):2366-2382. Nature Publishing Group
- [19]König M, Holtzhünter HG: Fluxviz: cytoscape plug-in for visualization of flux distributions in networks. Genome Informatics 2010: The 10th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2010): Kyoto University 2010. Japan, 26–28 July 2010, 24, page 96. World Scientific
- [20]Junker BH, Klukas C, Schreiber F: VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 2006, 7(1):109. BioMed Central Ltd BioMed Central Full Text
- [21]Kostromins A, Stalidzans E: Paint4Net: COBRA Toolbox extension for visualization of stoichiometric models of metabolism. Biosystems 2012, 109(2):233-239.
- [22]Jensen PA, Papin JA: MetDraw: automated visualization of genome-scale metabolic network reconstructions and high-throughput data.Bioinformatics 2014, 30:btt758.
- [23]Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, et al.: The systems biology graphical notation. Nat Biotechnol 2009, 27(8):735-741. Nature Publishing Group
- [24]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19(4):524-531. Oxford Univ Press
- [25]Dräger A, Rodriguez N, Dumousseau M, Dörr A, Wrzodek C, Le Novère N, Zell A, Hucka M: JSBML: a flexible Java library for working with SBML. Bioinformatics 2011, 27(15):2167-2168. Oxford Univ Press
- [26]van Iersel MP, Villéger AC, Czauderna T, Boyd SE, Bergmann FT, Luna A, Demir E, Sorokin A, Dogrusoz U, Matsuoka Y, Funahashi A, Aladjem MI, Mi H, Moodie SL, Kitano H, Le Novère N, Schreiber F: Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 2012, 28(15):2016-2021.
- [27]Fruchterman TMJ, Reingold EM: Graph drawing by force-directed placement. Software Pract Ex 1991, 21(11):1129-1164.
- [28]Kitano H, Funahashi A, Matsuoka Y, Oda K: Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 2005, 23(8):961-966. Nature Publishing Group
- [29]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(1):109-114. Oxford Univ Press
- [30]Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BØ: Comparison of network-based pathway analysis methods. Trends Biotechnol 2004, 22(8):400-405. Elsevier
- [31]Lee PC, Lee WG, Lee SY, Chang HN, Chang YK: Fermentative production of succinic acid from glucose and corn steep liquor by Anaerobiospirillum succiniciproducens. Biotechnol Bioproc Eng 2000, 5(5):379-381. Springer
- [32]Reed JL, Vo TD, Schilling CH, Palsson BØ: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4(9):R54. BioMed Central Full Text
- [33]Rocha M, Maia P, Mendes R, Pinto JP, Ferreira EC, Nielsen J, Patil KR, Rocha I: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 2008, 9:499. BioMed Central Full Text
- [34]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.