期刊论文详细信息
BMC Cell Biology
Extracellular fluid flow and chloride content modulate H + transport by osteoclasts
Priscilla Morethson1 
[1] Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
关键词: Bis-carboxyethyl-carboxyfluorescein-AM (BCECF-AM);    Fluorescence microscopy;    Bone extracellular fluid;    Bone resorption;    Proton secretion;    ClC-7;    Intracellular pH regulation;    Osteoclast;   
Others  :  1222816
DOI  :  10.1186/s12860-015-0066-4
 received in 2015-02-26, accepted in 2015-07-28,  发布年份 2015
PDF
【 摘 要 】

Background

Bone resorption takes place within the basic multicellular units (BMU), and the surface to be resorbed is isolated from adjacent bone surfaces by a sealing zone between osteoclast membrane and bone matrix, which defines the limits of the resorption lacuna. Considering that the extracellular fluid (ECF) in both BMU and the resorption lacuna can be isolated from its surroundings, I hypothesize that flow and ion composition of the bone ECF in these sites might contribute to the regulation of osteoclast H +secretion. To investigate this hypothesis, I evaluated the H +secretion properties of individual osteoclasts and osteoclast-like cells (OCL-cells) and investigated whether changes in flow or chloride content of the extracellular solution modify the H +secretion properties in vitro.

Results

The results show that 1) osteoclasts are unable to secrete H +and regulate intracellular pH (pH i ) under continuous flow conditions and exhibit progressive intracellular acidification; 2) the cessation of flow coincides with the onset of H +secretion and subsequent progressive intracellular alkalinization of osteoclasts and OCL-cells; 3) osteoclasts exhibit spontaneous rhythmic oscillations of pH iin non-flowing ECF, 4) pH ioscillations are not abolished by concanamycin, NPPB, or removal of extracellular Na +or Cl ; 5) extracellular Cl removal modifies the pattern of oscillations, by diminishing H +secretion; 6) pH ioscillations are abolished by continuous flowing of ECF over osteoclasts and OCL-cells.

Conclusions

The data suggest, for the first time, that ECF flow and Cl content have direct effects on osteoclast H +secretion and could be part of a mechanism determining the onset of osteoclast H +secretion required for bone resorption.

【 授权许可】

   
2015 Morethson.

【 预 览 】
附件列表
Files Size Format View
20150828010852941.pdf 1693KB PDF download
Fig. 7. 45KB Image download
Fig. 6. 21KB Image download
Fig. 5. 55KB Image download
Fig. 4. 90KB Image download
Fig. 3. 44KB Image download
Fig. 2. 23KB Image download
Fig. 1. 30KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Baron R, Neff L, Louvard D, Courtoy PJ. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacuna and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol. 1985; 101(6):2210-22.
  • [2]Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988; 175(2):266-76.
  • [3]Kwon K, Wang E, Chung A, Chang N, Lee S. Effect of salinity on hidroxyapatite dissolution studied by atomic force microscopy. J Phys Chem. 2009; 113(9):3369-72.
  • [4]Bruzzaniti A, Baron R. Molecular regulation of osteoclast activity. Rev Endocr Metab Disord. 2006; 7(1–2):123-39.
  • [5]Nordström T, Rotstein OD, Romanek R, Asotra S, Heersche JNM, Manolson MF, et al. Regulation of cytoplasmic pH in osteoclasts. Contribution of proton pumps and a proton-selective conductance. J Biol Chem. 1995;270(5):2203–12.
  • [6]Ravesloot JH, Eisen T, Baron R, Boron WF. Role of Na + /H + exchangers and vacuolar H + −pumps in intracellular pH regulation in neonatal rat osteoclasts. J Gen Physiol. 1995; 105(2):177-208.
  • [7]Morethson P, Mello-Aires M. Acid extrusion and intracellular pH regulation in primary osteoclasts cultured on glass. Calc Tissue Int. 2008; 82:S131-2.
  • [8]Morethson P. Osteoclast proton transport modulation by fluid flow. Bone. 2011; 48:S135.
  • [9]Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake‖ FH, McQueney MS, Foged NT, Delmas PD, Delaissé JM. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998;273:32347–52.
  • [10]Vaananen HK, Karhukorpi EK, Sundquist K, Wallmark B, Roininen I, Hentunen T, et al. Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled borders of osteoclasts. J Cell Biol. 1990;111(3):1305–11.
  • [11]Kelly ME, Dixon SJ, Sims SM. Outwardly rectifying chloride current in rabbit osteoclasts is actived by hyposmotic stimulation. J Physiol. 1994; 475:377-89.
  • [12]Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y, et al. NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun. 2008;369(2):320–6.
  • [13]Bouyer P, Sakai H, Itokawa T, Kawano T, Fulton CM, Boron WF, et al. Colony-stimulating factor-1 increases osteoclast intracellular pH and promotes survival via the electroneutral Na+/HCO3- cotransporter NBCn1. Endocrinology. 2007;148(2):831–40.
  • [14]Bevensee MO, Boron WF. Control of Intracellular pH. Seldin and Giebisch’s The Kidney: Physiology & Pathophysiology. Fifth Edition. Alpern RJ, Caplan M, Moe OW, editors. Elsevier Inc, New York; 2013.
  • [15]Parker MD, Boron WF. The Divergence, Actions, Roles, and Relatives of Sodium-Coupled Bicarbonate Transporters. Physiol Rev. 2013; 93:803-959.
  • [16]Riihonen R, Nielsen S, Vaananen HK, Laitala-Leinonen T, Kwon TH. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate cotransporter NBCn1. Matrix Biol. 2010; 29:287-94.
  • [17]Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, et al. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest. 1989;83(1):227–33.
  • [18]Wu J, Glimcher LH, Aliprantis AO. HCO 3− /Cl − anion exchanger SLC4A2 is required for proper osteoclast differentiation and function. Proc Natl Acad Sci U S A. 2008; 105:16934-9.
  • [19]Supanchart C, Kornak U. Ion channels and transporters in osteoclasts. Arch Biochem Biophys. 2008; 473(2):161-5.
  • [20]Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports. 2014; 3:481.
  • [21]Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Enginering. 1991; 113(2):191-7.
  • [22]Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res. 1997; 12(7):1133-41.
  • [23]Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284(4):C934–43.
  • [24]Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21(4):605–15.
  • [25]Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone. 2007; 41(5):745-51.
  • [26]Boron WF, De Weer P. Intracellular pH transients in squid giant axons caused by CO 2 , NH 3 , and metabolic inhibitors. J Gen Physiol. 1976; 67(1):91-112.
  • [27]Everts V, de Vries TJ, Helfrich MH. Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta. 2009; 1792(8):757-65.
  • [28]Grano M, Faccio R, Colucci S, Paniccia R, Baldini N, Zallone AZ, et al. Extracellular Ca2+ sensing is modulated by pH in human osteoclast-like cells in vitro. Am J Physiol. 1994;267:C961–8.
  • [29]Blair HC, Teitelbaum SL, Tan HL, Koziol CM, Schlesinger PH. Passive chloride permeability charge coupled to H( + )-ATPase of avian osteoclast ruffled membrane. Am J Physiol. 1991; 260:C1315-24.
  • [30]Lees RL, Heersche JN. Differences in regulation of pH(i) in large (>/=10 nuclei) and small (
  • [31]Nordström T, Shrode LD, Rotstein OD, Romanek R, Goto T, Heersche JN, et al. Chronic extracellular acidosis induces plasmalemmal vacuolar type H+ ATPase activity in osteoclasts. J Biol Chem. 1997;272(10):6354–60.
  • [32]Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem. 1997; 272:18636-43.
  • [33]Zhao H, Ross FP. Mechanisms of osteoclastic secretion. Ann N Y Acad Sci. 2007; 1116:238-44.
  • [34]Okamoto F, Kajiya H, Toh K, Uchida S, Yoshikawa M, Sasaki S, et al. Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Am J Physiol Cell Physiol. 2008;294(3):C693–701.
  • [35]Carraro-Lacroix LR, Lessa LM, Fernandez R, Malnic G. Physiological implications of the regulation of vacuolar H + -ATPase by chloride ions. Braz J Med Biol Res. 2009; 42(2):155-63.
  • [36]Graves AR, Curran PK, Smith CL, Mindell JA. The Cl − /H + antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature. 2008; 453(7196):788-92.
  • [37]Green J, Kleeman CR. Role of bone in regulation of systemic acid–base balance. Editorial Review. Kidney Int. 1991; 39:9-26.
  • [38]Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.
  • [39]Laroche M. Intraosseous circulation from physiology to disease. Joint Bone Spine. 2002; 69(3):262-9.
  • [40]Parfitt AM. The mechanism of coupling: a role for the vasculature. Bone. 2000; 26(4):319-23.
  • [41]Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003;196(1):2–8.
  • [42]Okamoto F, Kajiya H, Fukushima H, Jimi E, Okabe K. Prostaglandin E2 activates outwardly rectifying Cl( − ) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts. Am J Physiol Cell Physiol. 2004; 287(1):C114-24.
  文献评价指标  
  下载次数:44次 浏览次数:5次