期刊论文详细信息
BMC Microbiology
‘Candidatus Phytoplasma phoenicium’ associated with almond witches’-broom disease: from draft genome to genetic diversity among strain populations
Piero Attilio Bianco1  Alberto Alma6  Marina Molino Lova2  Rosemarie Tedeschi6  Paola Casati1  Hana Sobh4  Elia Choueiri5  Christin Siewert3  Yusuf Abou-Jawdah4  Maan Jawhari4  Michael Kube3  Fabio Quaglino1 
[1] Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, via Celoria 2, Milan, 20133, Italy;AVSI Foundation, Jounieh, Ghadir, Lebanon;Division Phytomedicine, Thaer-Institute, Humboldt-Universität zu Berlin, Berlin, Germany;Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon;Department of Plant Protection, Lebanese Agricultural Research Institute, Tal Amara, Lebanon;Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco (TO), Italy
关键词: BI-1;    Integral membrane protein;    Vector;    Parasitism;    Phytoplasma;   
Others  :  1227615
DOI  :  10.1186/s12866-015-0487-4
 received in 2015-04-10, accepted in 2015-07-16,  发布年份 2015
PDF
【 摘 要 】

Background

Almond witches’-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with ‘Candidatus Phytoplasma phoenicium’. In the present study, we generated a draft genome sequence of ‘Ca. P. phoenicium’ strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences.

Results

Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of ‘Ca. P. phoenicium’ draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other ‘Ca. Phytoplasma’ species.

Conclusion

The genetic diversity within ‘Ca. P. phoenicium’ strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in ‘Ca. P. phoenicium’ draft genome and within genomes of other ‘Ca. Phytoplasma’ species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response.

【 授权许可】

   
2015 Quaglino et al.

【 预 览 】
附件列表
Files Size Format View
20150929022557331.pdf 3600KB PDF download
Fig. 5. 75KB Image download
Fig. 4. 174KB Image download
Fig. 3. 187KB Image download
Fig. 2. 91KB Image download
Fig. 1. 103KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Lee I-M, Davis RE, Gundersen-Rindal DE. Phytoplasma: phytopathogenic mollicutes. Ann Rev Microbiol. 2000; 54:221-55.
  • [2]Bertaccini A, Duduk B. Phytoplasmas and phtoplasma diseases: a review of recent research. Phytopath Mediterr. 2009; 48:355-78.
  • [3]Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Ann Rev Entomol. 2006; 51:91-111.
  • [4]Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D et al.. A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol. 1989; 171:6455-67.
  • [5]Zhao Y, Davis RE, Lee I-M. Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. Int J Syst Evol Microbiol. 2005; 55:2131-41.
  • [6]‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol. 2004; 54:1243-55.
  • [7]Duduk B, Bertaccini A. Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough? Phytopath Mollic. 2011; 1:1-13.
  • [8]Zhao Y, Wei W, Lee I-M, Shao J, Suo X, Davis RE. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol. 2009; 59:2582-93.
  • [9]Kenyon L, Harrison NA, Ashburner GR, Boa ER, Richardson PA. Detection of a pigeon pea witches’-broom-related phytoplasma in trees of Gliricidia sepium affected by little-leaf disease in Central America. Plant Pathol. 1998; 47:671-80.
  • [10]Verdin E, Salar P, Danet J, Choueiri E, Jreijiri F, El Zammar S et al.. ‘Candidatus phytoplasma phoenicium’ sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int J Syst Evol Microbiol. 2003; 53:833-38.
  • [11]Khan AJ, Al-Subhi AM, Calari A, Al-Saady NA, Bertaccini A. A new phytoplasma associated with witches’ broom of Cassia italica in Oman. B Insectol. 2007; 60:269-70.
  • [12]Davis RE, Dally EL, Zhao Y, Lee I-M, Jomantiene R, Detweiler AJ et al.. First report of a new subgroup 16SrIX-E (‘Candidatus Phytoplasma phoenicium’-related) phytoplasma associated with juniper witches’ broom disease in Oregon. USA Plant Pathol. 2010; 59:1161.
  • [13]Abou-Jawdah Y, Karakashian A, Sobh H, Martini M, Lee I-M. An epidemic of almond witches’-broom in Lebanon: classification and phylogenetic relationship of the associated phytoplasma. Plant Dis. 2002; 86:477-84.
  • [14]Lee I-M, Bottner-Parker KD, Zhao Y, Bertaccini A, Davis RE. Differentiation and classification of phytoplasmas in the pigeon pea witches’-broom group (16SrIX): an update based on multiple gene sequence analysis. Int J Syst Evol Microbiol. 2012; 62:2279-85.
  • [15]Wei W, Davis RE, Lee I-M, Zhao Y. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol. 2007; 57:1855-67.
  • [16]Molino Lova M, Quaglino F, Abou-Jawdah Y, Choueiri E, Sobh H, Casati P et al.. Identification of new 16SrIX subgroups, −F and -G, among ‘Candidatus Phytoplasma phoenicium’ strains infecting almond, peach and nectarine in Lebanon. Phytopathol Mediterr. 2011; 50:273-82.
  • [17]Choueiri E, Jreijiri F, Issa S, Verdin E, Bové J, Garnier M. First report of a phytoplasma disease of almond (Prunus amygdalus) in Lebanon. Plant Dis. 2001; 85:802.
  • [18]Salehi M, Izadpanah K, Heydarnejad J. Characterization of a new almond witches’-broom phytoplasma in Iran. J Phytopathol. 2006; 154:386-91.
  • [19]Zirak L, Bahar M, Ahoonmanesh A. Characterization of phytoplasmas associated with almond diseases in Iran. J Phytopathol. 2009; 157:736-41.
  • [20]Abou-Jawdah Y, Sobh H, Akkary M. First report of Almond witches’-broom phytoplasma (‘Candidatus Phytoplasma phoenicium’) causing a severe disease on nectarine and peach trees in Lebanon. B OEPP/EPPO. 2009; 39:94-8.
  • [21]Salehi M, Haghshenas F, Khanchezar A, Esmailzadeh-Hosseini SA. Association of ‘Candidatus Phytoplasma phoenicium’ with GF-677 witches’ broom in Iran. B Insectol. 2011; 64:S113-4.
  • [22]Casati P, Quaglino F, Stern AR, Tedeschi R, Alma A, Bianco PA. Multiple gene analyses reveal extensive genetic diversity among ‘Candidatus Phytoplasma mali’ populations. Ann Appl Biol. 2011; 158:257-66.
  • [23]Davis RE, Zhao Y, Dally E, Lee I-M, Jomantiene R, Douglas SM. ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol. 2013; 63:766-76.
  • [24]Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W et al.. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. Int J Syst Evol Microbiol. 2013; 63:2879-94.
  • [25]Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S et al.. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet. 2004; 36:27-9.
  • [26]Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV et al.. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol. 2006; 188:3682-96.
  • [27]Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM et al.. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics. 2008; 9:306e. BioMed Central Full Text
  • [28]Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rpA) and ‘Ca. Phytoplasma asteris’ strains OY-M and AYWB. J Bacteriol. 2008; 190:3979-91.
  • [29]Saccardo F, Martini M, Palmano S, Ermacora P, Scortichini M, Loi N et al.. Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology. 2012; 158:2805-14.
  • [30]Andersen MT, Liefting LW, Havukkala I, Beever RE. Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics. 2013; 14:529. BioMed Central Full Text
  • [31]Chung WC, Chen LL, Lo WS, Lin CP, Kuo CH. Comparative analysis of the peanut witches’-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS ONE. 2013; 8: Article ID e62770
  • [32]Mitrović J, Siewert C, Duduk B, Hecht J, Mölling K, Broecker F et al.. Generation and analysis of draft sequences of ‘stolbur’ phytoplasma from multiple displacement amplification templates. J Mol Microbiol Biotechnol. 2013; 24:1-11.
  • [33]Chen W, Li Y, Wang Q, Wang N, Wu Y. Comparative genome analysis of wheat blue dwarf phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China. PLoS ONE. 2014; 9:e96436.
  • [34]Cimerman A, Arnaud G, Foissac X. Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl Environ Microbiol. 2006; 72:3274-83.
  • [35]Pacifico D, Alma A, Bagnoli B, Foissac X, Pasquini G, Tessitori M et al.. Characterization of Bois noir isolates by restriction fragment length polymorphism of a Stolbur-specific putative membrane protein gene. Phytopathology. 2009; 99:711-15.
  • [36]Fabre A, Danet J-L, Foissac X. The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene. 2011; 472:37-41.
  • [37]Seemüller E, Sule S, Kube M, Jelkmann W, Schneider B. The AAA+ ATPases and HflB/FtsH proteases of ‘Candidatus Phytoplasma mali’: phylogenetic diversity, membrane topology, and relationship to strain virulence. Mol Plant Microbe Interact. 2013; 26:367-76.
  • [38]Deng S, Hiruki C. Genetic relatedness between two nonculturable mycoplasmalike organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology. 1991; 81:1475-9.
  • [39]Schneider B, Seemüller E, Smart CD, Kirkpatrick BC. Phylogenetic classification of plant pathogenic mycoplasma-like organisms orphytoplasmas. In: Molecular and diagnostic procedures in mycoplasmology. Razin S, Tully JG, editors. Academic, San Diego, CA, USA; 1995: p.369-80.
  • [40]Gundersen DE, Lee I-M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr. 1996; 35:144-51.
  • [41]Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999; 41:95-8.
  • [42]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28:2731-9.
  • [43]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [44]Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011; 21:1552-60.
  • [45]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008; 9:75. BioMed Central Full Text
  • [46]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA et al.. Artemis: sequence visualization and annotation. Bioinformatics. 2000; 16:944-5.
  • [47]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R et al.. InterProScan: protein domains identifier. Nucleic Acids Res. 2005; 33:116-20.
  • [48]Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction - the Phobius web server. Nucleic Acids Res. 2007; 35:429-32.
  • [49]Siewert C, Hess WR, Duduk B, Huettel B, Reinhardt B, Büttner C et al.. Complete genome determination and analysis of Acholeplasma oculi strain 19 L, highlighting the loss of basic genetic features in the Acholeplasmataceae. BMC Genomics. 2014; 15:391. BioMed Central Full Text
  • [50]Fouts DE, Brinkac L, Beck E, Inman J, Sutton G. PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res. 2012; 40: Article ID e172
  • [51]Abou-Jawdah Y, Dakhil H, El-Mehtar S, Lee I-M. Almond witches’-broom phytoplasma, a potential threat to almond, peach and nectarine. Can J Plant Pathol. 2003; 25:28-32.
  • [52]Langer M, Maixner M. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non ribosomal DNA. Vitis. 2004; 43:191-9.
  • [53]Mitrović J, Kakizawa S, Duduk B, Oshima K, Namba S, Bertaccini A. The groEL gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Ann Appl Biol. 2011; 159:41-8.
  • [54]Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y et al.. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A. 2006; 103:4252-7.
  • [55]Boonrod K, Munteanu B, Jarausch B, Jarausch W, Krczal G. An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Mol Plant Microbe Interact. 2012; 25:889-95.
  • [56]Abou-Jawdah Y, Abdel Sater A, Jawhari M, Sobh H, Abdul-Nour H, Bianco PA et al.. Asymmetrasca decedens (Cicadellidae, Typhlocybinae), a natural vector of ‘Candidatus Phytoplasma phoenicium’. Ann Appl Biol. 2014; 165:395-403.
  • [57]Tedeschi R, Picciau L, Quaglino F, Abou-Jawdah Y, Molino Lova M, Jawhari M et al.. A cixiid survey for natural potential vectors of ‘Candidatus Phytoplasma phoenicium’ in Lebanon and preliminary transmission trials. Ann Appl Biol. 2014; 166:372-88.
  • [58]Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C et al.. Multilocus sequence typing confirms the close genetic interrelatedness of three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol. 2007; 73:4001-10.
  • [59]Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E, Foissac X. Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. Int J Syst Evol Microbiol. 2011; 61:2129-34.
  • [60]Kakizawa S, Oshima K, Jung H-Y, Suzuki S, Nishigawa H, Arashida R et al.. Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J Bacteriol. 2006; 188:3424-8.
  • [61]Bai X, Correa VR, Toruño TY, Ammar D, Kamoun S, Hogenhout SA. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant Microbe Interact. 2009; 22:18-30.
  • [62]Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M et al.. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A. 2009; 106:6416-21.
  • [63]MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R et al.. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 2011; 157:831-41.
  • [64]Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M et al.. Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS ONE. 2011; 6: Article ID e23242
  • [65]Siewert C, Luge T, Duduk B, Seemüller E, Büttner C, Sauer S et al.. Analysis of expressed genes of the bacterium ‘Candidatus Phytoplasma mali’ highlights key features of virulence and metabolism. PLoS ONE. 2014; 9: Article ID e94391
  • [66]Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A. The ancient cell death suppressor BAX inhibitor-1. Cell Calcium. 2011; 50:251-60.
  • [67]Wang JH, Bayles KW. Programmed cell death in plants: lessons from bacteria? Trends Plant Sci. 2013; 18:133-9.
  • [68]Hückelhoven R. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis. 2004; 9:299-307.
  • [69]Hückelhoven R, Dechert C, Kogel KH. Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A. 2003; 100:5555-60.
  • [70]Eichmann R, Schultheiss H, Kogel KH, Hückelhoven R. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol Plant Microbe Interact. 2004; 17:484-90.
  • [71]Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E. Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Diff. 2011; 18:1271-8.
  • [72]Christensen NM, Axelsen KB, Nicolaisen M, Schulz A. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 2005; 10:526-35.
  • [73]Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. Sci World J. 2012;185942.
  • [74]Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA. Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol. 2010; 60:2887-97.
  • [75]Kube M, Siewert C, Migdoll AM, Duduk B, Holz S, Rabus R et al.. Analysis of the complete genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and their comparison to the obligate parasites from ‘Candidatus Phytoplasma’. J Mol Microbiol Biotechnol. 2014; 24:19-36.
  • [76]Saigo M, Golic A, Alvarez CE, Andreo CS, Hogenhout SA, Mussi MA, et al. Metabolic regulation of phytoplasma malic enzyme and phosphotransacetylase supports the use of malate as energy source in these plant-pathogens. Microbiology. 2014;doi:10.1099/mic.0.083469-0.
  • [77]Himeno M, Kitazawa Y, Yoshida T, Maejima K, Yamaji Y, Oshima K et al.. Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Sci Rep. 2014; 4:4111.
  • [78]Bressan A, Clair D, Sémétey O, Boudon-Padieu E. Effect of two strains of Flavescence dorée phytoplasma on the survival and fecundity of the experimental leafhopper vector Euscelidius variegatus Kirschbaum. J Invertebr Pathol. 2005; 89:144-9.
  • [79]Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. Diverse targets of phytoplasma effectors: from plant development to defence against insects. Ann Rev Phytopath. 2011; 49:175-95.
  文献评价指标  
  下载次数:363次 浏览次数:19次