期刊论文详细信息
BMC Microbiology
Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit
Kim Heylen3  Paul De Vos2  Peter Vandamme3  Nico Boon1  David van der Ha1  Sven Hoefman3 
[1] Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;BCCM/LMG Bacteria Collection, Ghent, Belgium;Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
关键词: Detoxification;    Nitrogen assimilation;    Strain dependency;    Methylomonas lenta;    Methylomonas koyamae;    Methylomonas methanica;   
Others  :  1141530
DOI  :  10.1186/1471-2180-14-83
 received in 2013-12-23, accepted in 2014-03-27,  发布年份 2014
PDF
【 摘 要 】

Background

The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments.

Results

We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features.

Conclusions

Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning.

【 授权许可】

   
2014 Hoefman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327074429713.pdf 560KB PDF download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X: Couplings Between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.
  • [2]Semrau JD, DiSpirito AA, Yoon S: Methanotrophs and copper. FEMS Microbiol Rev 2010, 34:496-531.
  • [3]Dedysh SN: Exploring methanotroph diversity in acidic northern wetlands: Molecular and cultivation-based studies. Microbiology 2009, 78:655-669.
  • [4]Hanson RS, Hanson TE: Methanotrophic bacteria. Microbiol Rev 1996, 60:439-471.
  • [5]Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009, 1:293-306.
  • [6]Stein LY, Klotz MG: Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 2011, 39:1826-1831.
  • [7]Bowman JP, Sly LI, Nichols PD, Hayward AC: Revised taxonomy of the methanotrophs - Description of Methylobacter Gen-Nov, emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group-I methanotrophs. Int J Syst Bacteriol 1993, 43:735-753.
  • [8]Nyerges G, Han SK, Stein LY: Effects of Ammonium and Nitrite on Growth and Competitive Fitness of Cultivated Methanotrophic Bacteria. Appl Environ Microbiol 2010, 76:5648-5651.
  • [9]Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG: Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett 2011, 322:82-89.
  • [10]Nyerges G, Stein LY: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 2009, 297:131-136.
  • [11]Murrell JC, Dalton H: Nitrogen-fixation in obligate methanotrophs. J Gen Microbiol 1983, 129:3481-3486.
  • [12]Auman AJ, Speake CC, Lidstrom ME: nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 2001, 67:4009-4016.
  • [13]Boulygina ES, Kuznetsov BB, Marusina AI, Turova TP, Kravchenko IK, Bykova SA, Kolganova TV, Gal'chenko VF: Study of nucleotide sequences of nifH genes in methanotrophic bacteria. Mikrobiologiia 2002, 71:500-508.
  • [14]Khadem AF, Pol A, Jetten MS, Op den Camp HJ: Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology 2010, 156:1052-1059.
  • [15]King GM, Schnell S: Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microbiol 1998, 64:253-257.
  • [16]Schnell S, King GM: Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol 1994, 60:3514-3521.
  • [17]Bodelier PL, Roslev P, Henckel T, Frenzel P: Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 2000, 403:421-424.
  • [18]Noll M, Frenzel P, Conrad R: Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol Ecol 2008, 65:125-132.
  • [19]Mohanty SR, Bodelier PLE, Floris V, Conrad R: Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 2006, 72:1346-1354.
  • [20]Bodelier PLE, Laanbroek HJ: Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 2004, 47:265-277.
  • [21]Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, Bodelier PL: Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 2013, 5(3):335-345.
  • [22]Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J: Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996, 60:407-438.
  • [23]Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW: Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients. Science 2006, 311:1737-1740.
  • [24]Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF: Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton. Science 2008, 320:1081-1085.
  • [25]Bowman J: The Methanotrophs - The Families Methylococcaceae and Methylocystaceae. Chapter 3.1.14. In The Prokaryotes, Volume 5 Third edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. 2006, 266-289.
  • [26]Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A, Kimura M, Asakawa S: Methylomonas koyamae sp nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol 2012, 62:1832-1837.
  • [27]Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN: Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 2012, 63:2282-2289.
  • [28]Anthony C: Biochemistry of methylotrophs. London: The Academic Press; 1982.
  • [29]Vine CE, Cole JA: Nitrosative stress in Escherichia coli: reduction of nitric oxide. Biochem Soc Trans 2011, 39:313-315.
  • [30]Zumft WG: Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. J Inorg Biochem 2005, 99:194-215.
  • [31]Zumft WG, Braun C, Cuypers H: Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem 1994, 219:418-490.
  • [32]Hino T, Nagano S, Sugimoto H, Tosha T, Shiro Y: Molecular structure and function of bacterial nitric oxide reductase. Biochim Biophys Acta 1817, 2011:680-687.
  • [33]Stein LY: Surveying N2O-producing pathways in bacteria. In Methods in Enzymology: research on nitrification and related processes, Volume 486. Edited by Klotz MG. San Diego: Elsevier Academic Press; 2011:131-152.
  • [34]Smith MS, Zimmerman K: Nitrous oxide production by nondenitrifying soil nitrate reducers. Soil Sci Soc Am J 1981, 45:865-871.
  • [35]Smith MS: Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol 1983, 45:1545-1547.
  • [36]Vorob'ev AV, Dedysh SN: Inadequacy of enrichment culture technique for assessing the structure of methanotrophic communities in peat soil. Microbiology 2008, 77:504-507.
  • [37]Park SH, Shah NN, Taylor RT, Droege MW: Batch cultivation of Methylosinus trichosporium OB3b. 2. Production of particulate methane monooxygenase. Biotechnol Bioeng 1992, 40:151-157.
  • [38]Lee SW, Im J, DiSpirito AA, Bodrossy L, Barcelona MJ, Semrau JD: Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl Microbiol Biotechnol 2009, 85:389-403.
  • [39]Hoefman S, Heylen K, de Vos P: Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank in Belgium. Int J Syst Evol Microbiol 2014., 4doi: 10.1099/ijs.0.057794-0
  • [40]Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K: Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol 2012, 5:368-378.
  • [41]Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN: Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 2003, 53:1231-1239.
  • [42]Griess P: Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen”. Chem Ber 1879, 12:426-428.
  • [43]Cataldo DA, Maroon M, Schrader LE, Youngs VL: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 1975, 6:71-80.
  • [44]Taylor S, Ninjoor V, Dowd DM, Tappel AL: Cathepsin B2 measurement by sensitive fluorometric ammonia analysis. Anal Biochem 1974, 60:153-162.
  • [45]Hoefman S, van der Ha D, Boon N, Vandamme P, De Vos P, Heylen K: Customized media based on miniaturized screening improve growth rate and cell yield of methane-oxidizing bacteria of the genus Methylomonas. Antonie Van Leeuwenhoek 2014, 105:353-366.
  • [46]Coenye T, Spilker T, Martin A, LiPuma JJ: Comparative assessment of genotyping methods for epidemiologic study of Burkholderia cepacia genomovar III. J Clin Microbiol 2002, 40:3300-3307.
  • [47]Costello AM, Lidstrom ME: Molecular Characterization of Functional and Phylogenetic Genes from Natural Populations of Methanotrophs in Lake Sediments. Appl Environ Microbiol 1999, 65:5066-5074.
  • [48]De Meyer SE, van Hoorde K, Vekeman B, Braeckman T, Willems A: Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 2011, 43:2384-2396.
  • [49]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [50]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH: ARB: a software environment for sequence data. Nucleic Acids Res 2004, 32:1363-1371.
  • [51]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  文献评价指标  
  下载次数:12次 浏览次数:15次