期刊论文详细信息
BMC Microbiology
Macrophage environment turns otherwise MccJ25-resistant Salmonella into sensitive
Paula A Vincent1  Mónica A Delgado1  Ricardo N Farías1  Ricardo de Cristóbal1  Conrado Adler1  Natalia S Corbalán1  María Fernanda Pomares1 
[1] Instituto Superior de Investigaciones Biológicas (Concejo Nacional de Investigación Científica y Técnica-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Chacabuco 461, San Miguel de Tucumán 4000 Tucumán, Argentina
关键词: Low pH;    FhuA;    Salmonella Typhimurium;    Microcin J25;   
Others  :  1143765
DOI  :  10.1186/1471-2180-13-95
 received in 2013-01-23, accepted in 2013-04-22,  发布年份 2013
PDF
【 摘 要 】

Background

Microcin J25 (MccJ25) is a plasmid-encoded antibiotic peptide produced by Escherichia coli (E. coli). MccJ25 enters into the sensitive E. coli strains by the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbB, ExbD and SbmA. The resistance of Salmonella enterica serovar Typhimurium (S. Typhimurium) to MccJ25 is attributed to the inability of its FhuA protein to incorporate the antibiotic into the cell.

Results

In this work we demonstrate that S. Typhimurium becomes notably susceptible to MccJ25 when replicating within macrophages. In order to determine the possible cause of this phenomenon, we studied the sensitivity of S. Typhimurium to MccJ25 at conditions resembling those of the internal macrophage environment, such as low pH, low magnesium and iron deprivation. We observed that the strain was only sensitive to the antibiotic at low pH, leading us to attribute the bacterial sensitization to this condition. A MccJ25-resistant E. coli strain in which fhuA is deleted was also inhibited by the antibiotic at low pH. Then, we could assume that the MccJ25 sensitivity change observed in both E. coli fhuA and S. Typhimurium is mediated by a MccJ25 uptake independent of the FhuA receptor. Moreover, low pH incubation also sensitized S. Typhimurium to the hydrophobic antibiotic novobiocin, which does not affect enteric bacteria viability because it is unable to penetrate the bacterial outer membrane. This observation supports our hypothesis about low pH producing a modification in the bacterial membrane permeability that allows an unspecific MccJ25 uptake. On the other hand, MccJ25 inhibited S. Typhimurium when cells were preincubated in acidic pH medium and then treated at neutral pH with the antibiotic.

Conclusions

Our results suggest that acidic condition does not alter MccJ25 hydrophobicity but irreversibly modifies bacterial membrane permeability. This would allow an unspecific antibiotic uptake into the cell.

From our data it is possible to infer that intracellular pathogenic strains, which are in vitro resistant to MccJ25, could become susceptible ones in vivo. Therefore, the MccJ25 action spectrum would be broader than what in vitro experiments indicate.

【 授权许可】

   
2013 Pomares et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330001224844.pdf 285KB PDF download
Figure 5. 17KB Image download
Figure 4. 19KB Image download
Figure 3. 24KB Image download
Figure 2. 26KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthelemy M, Prigent Y, Salomon RA, Farias RN, Moreno F, Rebuffat S: The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 1999, 259(3):747-755.
  • [2]Salomon RA, Farias RN: Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 1992, 174(22):7428-7435.
  • [3]Salomon RA, Farias RN: The FhuA protein is involved in microcin 25 uptake. J Bacteriol 1993, 175(23):7741-7742.
  • [4]Salomon RA, Farias RN: The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 1995, 177(11):3323-3325.
  • [5]Killmann H, Braun M, Herrmann C, Braun V: FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 2001, 183(11):3476-3487.
  • [6]Bellomio A, Vincent PA, de Arcuri BF, Farias RN, Morero RD: Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production. J Bacteriol 2007, 189(11):4180-4186.
  • [7]Delgado MA, Rintoul MR, Farias RN, Salomon RA: Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J Bacteriol 2001, 183(15):4543-4550.
  • [8]Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farias RN, Salomon R: Mutations of bacterial RNA polymerase leading to resistance to microcin J25. J Biol Chem 2002, 277(52):50867-50875.
  • [9]Vincent PA, Delgado MA, Farias RN, Salomon RA: Inhibition of Salmonella enterica serovars by microcin J25. FEMS Microbiol Lett 2004, 236(1):103-107.
  • [10]Pomares MF, Delgado MA, Corbalan NS, Farias RN, Vincent PA: Sensitization of microcin J25-resistant strains by a membrane-permeabilizing peptide. Appl Environ Microbiol 2010, 76(20):6837-6842.
  • [11]Rathman M, Sjaastad MD, Falkow S: Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun 1996, 64(7):2765-2773.
  • [12]Boziaris IS, Adams MR: Temperature shock, injury and transient sensitivity to nisin in Gram negatives. J Appl Microbiol 2001, 91(4):715-724.
  • [13]Brooks AY J, Pham S: Stringent Response Changes Cell Membrane Permeability in Escherichia coli but does not Develop Cross Tolerance to Kanamycin, Tetracycline and Ampicillin. Journal of Experimental Microbiology and Immunology (JEMI) 2011, 15:30-35.
  • [14]Cao-Hoang L, Dumont F, Marechal PA, Gervais P: Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Arch Microbiol 2010, 192(4):299-305.
  • [15]Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I: Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 1985, 50(2):298-303.
  • [16]Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM: Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 2000, 66(5):2001-2005.
  • [17]Thongbai B, Gasalucka P, Waites WM: Morphological changes of temperature- and pH-stressed Salmonella following exposure to cetylpyridinium chloride and nisin. LWT 2006, 39:1180-1188.
  • [18]Yamaguchi A, Ohmori H, Kaneko-Ohdera M, Nomura T, Sawai T: Delta pH-dependent accumulation of tetracycline in Escherichia coli. Antimicrob Agents Chemother 1991, 35(1):53-56.
  • [19]Ofek I, Cohen S, Rahmani R, Kabha K, Tamarkin D, Herzig Y, Rubinstein E: Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice. Antimicrob Agents Chemother 1994, 38(2):374-377.
  • [20]Vaara M, Vaara T: Polycations sensitize enteric bacteria to antibiotics. Antimicrob Agents Chemother 1983, 24(1):107-113.
  • [21]Waring WS, Werkman CH: Growth of bacteria in an iron-free medium. Arch Biochem Biophys 1942, 1:303-310.
  文献评价指标  
  下载次数:79次 浏览次数:23次