期刊论文详细信息
BMC Research Notes
Hypoxia alters expression of Zebrafish Microtubule-associated protein Tau (mapta, maptb) gene transcripts
Michael Lardelli1  Giuseppe Verdile2  Ralph Martins3  Mengqi Chen4  Swamynathan Ganesan1  Morgan Newman1  Seyyed Hani Moussavi Nik1 
[1] Zebrafish Genetics Laboratory, School of Molecular and, Biomedical Sciences, The University of Adelaide, Adelaide SA 5005, Australia;School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia;McCusker Alzheimer’s Disease Research Foundation, Hollywood Private Hospital, Perth, WA, Australia;Centre of Excellence for Alzheimer’s disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
关键词: Zebrafish;    Hypoxia;    Alzheimer’s disease;    Alternative splicing;    Microtubule-associated protein tau (MAPT);   
Others  :  1125790
DOI  :  10.1186/1756-0500-7-767
 received in 2014-04-29, accepted in 2014-10-14,  发布年份 2014
PDF
【 摘 要 】

Background

Microtubule-associated protein tau (MAPT) is abundant in neurons and functions in assembly and stabilization of microtubules to maintain cytoskeletal structure. Human MAPT transcripts undergo alternative splicing to produce 3R and 4R isoforms normally present at approximately equal levels in the adult brain. Imbalance of the 3R-4R isoform ratio can affect microtubule binding and assembly and may promote tau hyperphosphorylation and neurofibrillary tangle formation as seen in neurodegenerative diseases such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). Conditions involving hypoxia such as cerebral ischemia and stroke can promote similar tau pathology but whether hypoxic conditions cause changes in MAPT isoform formation has not been widely explored. We previously identified two paralogues (co-orthologues) of MAPT in zebrafish, mapta and maptb.

Results

In this study we assess the splicing of transcripts of these genes in adult zebrafish brain under hypoxic conditions. We find hypoxia causes increases in particular mapta and maptb transcript isoforms, particularly the 6R and 4R isoforms of mapta and maptb respectively. Expression of the zebrafish orthologue of human TRA2B, tra2b, that encodes a protein binding to MAPT transcripts and regulating splicing, was reduced under hypoxic conditions, similar to observations in AD brain.

Conclusion

Overall, our findings indicate that hypoxia can alter splicing of zebrafish MAPT co-orthologues promoting formation of longer transcripts and possibly generating Mapt proteins more prone to hyperphosphorylation. This supports the use of zebrafish to provide insight into the mechanisms regulating MAPT transcript splicing under conditions that promote neuronal dysfunction and degeneration.

【 授权许可】

   
2014 Moussavi Nik et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150217025228460.pdf 962KB PDF download
Figure 3. 35KB Image download
Figure 2. 112KB Image download
Figure 1. 105KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Bowen DM, Smith CB, White P, Davison AN: Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 1976, 99:459-496.
  • [2]Johnson GV, Jenkins SM: Tau protein in normal and Alzheimer’s disease brain. J Alzheimers Dis 1999, 1:307-328.
  • [3]Kosik KS, Crandall JE, Mufson EJ, Neve RL: Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment. Ann Neurol 1989, 26:352-361.
  • [4]Bunker JM, Wilson L, Jordan MA, Feinstein SC: Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration. Mol Biol Cell 2004, 15:2720-2728.
  • [5]Han D, Qureshi HY, Lu Y, Paudel HK: Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro. J Biol Chem 2009, 284:13422-13433.
  • [6]Brandt R, Hundelt M, Shahani N: Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta 2005, 1739:331-354.
  • [7]Yasojima K, McGeer EG, McGeer PL: Tangled areas of Alzheimer brain have upregulated levels of exon 10 containing tau mRNA. Brain Res 1999, 831:301-305.
  • [8]Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, et al.: Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998, 393:702-705.
  • [9]Liu F, Gong CX: Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 2008, 3:8. BioMed Central Full Text
  • [10]Sergeant N, Wattez A, Delacourte A: Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J Neurochem 1999, 72:1243-1249.
  • [11]de Silva R, Lashley T, Strand C, Shiarli AM, Shi J, Tian J, Bailey KL, Davies P, Bigio EH, Arima K, Iseki E, Murayama S, Kretzschmar H, Neumann M, Lippa C, Halliday G, MacKenzie J, Ravid R, Dickson D, Wszolek Z, Iwatsubo T, Pickering-Brown SM, Holton J, Lees A, Revesz T, Mann DM: An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathol 2006, 111:329-340.
  • [12]Conrad C, Zhu J, Conrad C, Schoenfeld D, Fang Z, Ingelsson M, Stamm S, Church G, Hyman BT: Single molecule profiling of tau gene expression in Alzheimer’s disease. J Neurochem 2007, 103:1228-1236.
  • [13]Espinoza M, de Silva R, Dickson DW, Davies P: Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 2008, 14:1-16.
  • [14]Togo T, Akiyama H, Iseki E, Uchikado H, Kondo H, Ikeda K, Tsuchiya K, de Silva R, Lees A, Kosaka K: Immunohistochemical study of tau accumulation in early stages of Alzheimer-type neurofibrillary lesions. Acta Neuropathol 2004, 107:504-508.
  • [15]Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM: Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 2003, 5:209-228.
  • [16]Wen Y, Yang SH, Liu R, Perez EJ, Brun-Zinkernagel AM, Koulen P, Simpkins JW: Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta 2007, 1772:473-483.
  • [17]Newman M, Verdile G, Martins RN, Lardelli M: Zebrafish as a tool in Alzheimer’s disease research. Biochim Biophys Acta 2011, 1812:346-352.
  • [18]Catchen JM, Braasch I, Postlethwait JH: Conserved synteny and the zebrafish genome. Methods Cell Biol 2011, 104:259-285.
  • [19]Leimer U, Lun K, Romig H, Walter J, Grunberg J, Brand M, Haass C: Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 1999, 38:13602-13609.
  • [20]Groth C, Nornes S, McCarty R, Tamme R, Lardelli M: Identification of a second presenilin gene in zebrafish with similarity to the human Alzheimer’s disease gene presenilin2. Dev Genes Evol 2002, 212:486-490.
  • [21]Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, Falting J, Distel M, Koster RW, Schmid B, Haass C: A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 2009, 119:1382-1395.
  • [22]Giustiniani J, Chambraud B, Sardin E, Dounane O, Guillemeau K, Nakatani H, Paquet D, Kamah A, Landrieu I, Lippens G, Baulieu EE, Tawk M: Immunophilin FKBP52 induces Tau-P301L filamentous assembly in vitro and modulates its activity in a model of tauopathy. Proc Natl Acad Sci U S A 2014, 111:4584-4589.
  • [23]Chen M, Martins RN, Lardelli M: Complex splicing and neural expression of duplicated tau genes in zebrafish embryos. J Alzheimers Dis 2009, 18:305-317.
  • [24]Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A: Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 1988, 85:4051-4055.
  • [25]Hattori H, Matsumoto M, Iwai K, Tsuchiya H, Miyauchi E, Takasaki M, Kamino K, Munehira J, Kimura Y, Kawanishi K, Hoshino T, Murai H, Ogata H, Maruyama H, Yoshida H: The tau protein of oral epithelium increases in Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 2002, 57:M64-M70.
  • [26]Ingelson M, Vanmechelen E, Lannfelt L: Microtubule-associated protein tau in human fibroblasts with the Swedish Alzheimer mutation. Neurosci Lett 1996, 220:9-12.
  • [27]Moussavi Nik SH, Newman M, Lardelli M: The response of HMGA1 to changes in oxygen availability is evolutionarily conserved. Exp Cell Res 2011, 317:1503-1512.
  • [28]Suh J, Im DS, Moon GJ, Ryu KS, de Silva R, Choi IS, Lees AJ, Guenette SY, Tanzi RE, Gwag BJ: Hypoxic ischemia and proteasome dysfunction alter tau isoform ratio by inhibiting exon 10 splicing. J Neurochem 2010, 114:160-170.
  • [29]Tacke R, Tohyama M, Ogawa S, Manley JL: Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 1998, 93:139-148.
  • [30]Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive identification of exonic splicing enhancers in human genes. Science 2002, 297:1007-1013.
  • [31]Chen S, Townsend K, Goldberg TE, Davies P, Conejero-Goldberg C: MAPT isoforms: differential transcriptional profiles related to 3R and 4R splice variants. J Alzheimers Dis 2010, 22:1313-1329.
  • [32]Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B: Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 1998, 95:7737-7741.
  • [33]Ichihara K, Uchihara T, Nakamura A, Suzuki Y, Mizutani T: Selective deposition of 4-repeat tau in cerebral infarcts. J Neuropathol Exp Neurol 2009, 68:1029-1036.
  • [34]de Silva R, Lashley T, Gibb G, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A: Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 2003, 29:288-302.
  • [35]Chambers CB, Muma NA: Neuronal gene expression in aluminum-induced neurofibrillary pathology: an in situ hybridization study. Neurotoxicology 1997, 18:77-88.
  • [36]Tatemichi TK, Desmond DW, Mayeux R, Paik M, Stern Y, Sano M, Remien RH, Williams JB, Mohr JP, Hauser WA, Figueroa M: Dementia after stroke: baseline frequency, risks, and clinical features in a hospitalized cohort. Neurology 1992, 42:1185-1193.
  • [37]Guglielmotto M, Tamagno E, Danni O: Oxidative stress and hypoxia contribute to Alzheimer’s disease pathogenesis: two sides of the same coin. ScientificWorldJournal 2009, 9:781-791.
  • [38]Eperon LP, Graham IR, Griffiths AD, Eperon IC: Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 1988, 54:393-401.
  • [39]Kondo S, Yamamoto N, Murakami T, Okumura M, Mayeda A, Imaizumi K: Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. Genes Cells 2004, 9:121-130.
  • [40]Boyne LJ, Tessler A, Murray M, Fischer I: Distribution of Big tau in the central nervous system of the adult and developing rat. J Comp Neurol 1995, 358:279-293.
  • [41]Westerfield M: The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 5th edition. University of Oregon Press; 2007.
  • [42]Moussavi Nik SH, Croft K, Mori TA, Lardelli M: The comparison of methods for measuring oxidative stress in zebrafish brains. Zebrafish 2014, 11:248-254.
  • [43]Tang R, Dodd A, Lai D, McNabb WC, Love DR: Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin (Shanghai) 2007, 39:384-390.
  • [44]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  文献评价指标  
  下载次数:43次 浏览次数:11次