期刊论文详细信息
BMC Medical Genomics
Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients
Raimund W Kinne1  Reinhard Guthke2  Dirk Koczan4  Thomas Häupl3  Sebastian Vlaic2  Michael Weber2  René Huber1  Peter Kupfer2 
[1]Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus, Rudolf Elle, Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
[2]Leibnitz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
[3]Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
[4]Institute of Immunology, University of Rostock, Schillingallee 68, 18057 Rostock, Germany
关键词: Multi-stimuli modeling;    Cartilage development;    Growth factors;    Cytokines;    Synovial fibroblasts;    Rheumatoid arthritis;    Reverse engineering;    Network modeling;   
Others  :  847202
DOI  :  10.1186/1755-8794-7-40
 received in 2013-07-09, accepted in 2014-06-25,  发布年份 2014
PDF
【 摘 要 】

Background

Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis.

Methods

A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 β, TNF- α, TGF- β, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge.

Results

Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli.

Conclusion

A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term ‘cartilage development’ contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D.

【 授权许可】

   
2014 Kupfer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140718041456161.pdf 1588KB PDF download
Figure 3. 104KB Image download
Figure 2. 203KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA: Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 2004, 14(3):283-291. [PMID: 15193307]
  • [2]Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H, Pan Zj: A genomic regulatory network for development. Science 2002, 295(5560):1669-1678. [PMID: 11872831]
  • [3]Bolstad A, Van Veen BD, Nowak R: Causal network inference via group sparse regularization. IEEE Trans Signal Process 2011, 59(6):2628-2641. [PMID: 21918591]
  • [4]Meinshausen N, Bühlmann P: High-dimensional graphs and variable selection with the Lasso. Ann Stat 2006, 34(3):1436-1462.
  • [5]Morrissey ER, Juárez MA, Denby KJ, Burroughs NJ: On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 2010, 26(18):2305-2312. [PMID: 20639410]
  • [6]Opgen-Rhein R, Strimmer K: Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC, Bioinformatics 2007, 8 Suppl 2:S3. [PMID: 17493252]
  • [7]Kim SY, Imoto S, Miyano S: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003, 4(3):228-235. [PMID: 14582517]
  • [8]Rau A, Jaffrézic F, Foulley JL, Doerge RW: An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat Appl Genet Mol Biol 2010, 9:Article 9. [PMID: 20196759]
  • [9]Nam D, Yoon SH, Kim JF: Ensemble learning of genetic networks from time-series expression data. Bioinformatics 2007, 23(23):3225-3231. [PMID: 17977884]
  • [10]Bansal M, di Bernardo D: Inference of gene networks from temporal gene expression profiles. IET Syst Biol 2007, 1(5):306-312. [PMID: 17907680]
  • [11]Li CW, Chen BS: Identifying functional mechanisms of gene and protein regulatory networks in response to a broader range of environmental stresses. Comp Funct Genom 2010, 2010:20. doi:10.1155/2010/408705
  • [12]Weber M, Henkel SG, Vlaic S, Guthke R, van Zoelen EJ, Driesch D: Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0. BMC, Syst Biol 2013, 7:1. [PMID: 23280066]
  • [13]Wang Y, Joshi T, Zhang XS, Xu D, Chen L: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006, 22(19):2413-2420. [PMID: 16864593]
  • [14]Gupta R, Stincone A, Antczak P, Durant S, Bicknell R, Bikfalvi A, Falciani F: A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC, Syst Biol 2011, 5:52. [PMID: 21489290]
  • [15]Kupfer P, Sebastian V, Huber R, Kinne RW, Guthke R: Different stimuli for inference of gene regulatory network in rheumatoid arthritis. In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, Volume 1. Edited by Gamboa H., Fred ALN, Solé-Casals J, Fernandes P. Barcelona: Scitepress - Science and Technology Publications; 2013:282-287. [ISBN: 978-989-8565-35-8]
  • [16]Smolen JS, Steiner G: Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2003, 2(6):473-488. [PMID: 12776222]
  • [17]Kinne RW, Palombo-Kinne E, Emmrich F: Activation of synovial fibroblasts in rheumatoid arthritis. Ann Rheum Dis 1995, 54(6):501-504. [PMID: 7632096]
  • [18]Firestein GS: Evolving concepts of rheumatoid arthritis. Nature 2003, 423(6937):356-361. [PMID: 12748655]
  • [19]Choy E: Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012, 51 Suppl 5:v3-11. [PMID: 22718924]
  • [20]Karouzakis E, Neidhart M, Gay RE, Gay S: Molecular and cellular basis of rheumatoid joint destruction. Immunology Lett 2006, 106:8-13. [PMID: 16824621]
  • [21]Pohlers D, Huber R, Ukena B, Kinne RW: Expression of platelet-derived growth factors C and D in the synovial membrane of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 2006, 54(3):788-794. [PMID: 16508943]
  • [22]Schett G, McInnes IB: Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007, 7(6):429-442. [PMID: 17525752]
  • [23]Wilder RL, Lafyatis R, Roberts AB, Case JP, Kumkumian GK, Sano H, Sporn MB, Remmers EF: Transforming growth factor-beta in rheumatoid arthritis. Ann N Y Acad Sci 1990, 593:197-207. [PMID: 2165375]
  • [24]Sakuma M, Hatsushika K, Koyama K, Katoh R, Ando T, Watanabe Y, Wako M, Kanzaki M, Takano S, Sugiyama H, Hamada Y, Ogawa H, Okumura K, Nakao A: TGF-beta type I receptor kinase inhibitor down-regulates rheumatoid synoviocytes and prevents the arthritis induced by type II collagen antibody. Int Immunol 2007, 19(2):117-126. [PMID: 17135447]
  • [25]Niedermeier M, Pap T, Korb A: Therapeutic opportunities in fibroblasts in inflammatory arthritis. Best Pract Res Clin Rheumatol 2010, 24(4):527-540. [PMID: 20732650]
  • [26]Rosengren S, Corr M, Boyle DL: Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res Ther 2010, 12(2):R65. [PMID: 20380722]
  • [27]Arnett FC, Edworthy SM, Bloch DA, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, McShane DJ: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988, 31(3):315-324. [PMID: 3358796]
  • [28]Zimmermann T, Kunisch E, Pfeiffer R, Hirth A, Stahl HD, Sack U, Laube A, Liesaus E, Roth A, Palombo-Kinne E, Emmrich F, Kinne RW: Isolation and characterization of rheumatoid arthritis synovial fibroblasts from primary culture–primary culture cells markedly differ from fourth-passage cells. Arthritis Res 2001, 3:72-76. [PMID: 11178129]
  • [29]Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli GA, Bicciato S: Novel definition files for human GeneChips based on GeneAnnot. BMC, Bioinformatics 2007, 8:446. [PMID: 18005434]
  • [30]Lu J, Lee JC, Salit ML, Cam MC: Transcript-based redefinition of grouped oligonucleotide probe sets using AceView: high-resolution annotation for microarrays. BMC Bioinformatics 2007, 8:108. [PMID: 17394657]
  • [31]Chalifa-Caspi V, Yanai I, Ophir R, Rosen N, Shmoish M, Benjamin-Rodrig H, Shklar M, Stein TI, Shmueli O, Safran M, Lancet D: GeneAnnot: comprehensive two-way linking between oligonucleotide array probesets and GeneCards genes. Bioinformatics 2004, 20(9):1457-1458. [PMID: 17394657]
  • [32]Draghici S, Khatri P, Eklund AC, Szallasi Z: Reliability and reproducibility issues in DNA microarray measurements. Trends Genet 2006, 22(2):101-9. [PMID: 16380191]
  • [33]Harbig J, Sprinkle R, Enkemann SA: A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res 2005, 33(3):e31. [PMID: 16380191]
  • [34]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193. [PMID: 12538238]
  • [35]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127. [PMID: 16632515]
  • [36]Kendziorski CM, Newton MA, Lan H, Gould MN: On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 2003, 22(24):3899-3914. [PMID: 14673946]
  • [37]Chen Y, Dougherty ER, Bittner ML: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J Biomed Opt 1997, 2(4):364-374. [PMID: 23014960]
  • [38]Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 2001, 96(456):1151-1160. [http://dx.doi.org/10.2307/3085878 webcite]
  • [39]Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW: On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 2001, 8:37-52. [PMID: 11339905]
  • [40]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121. [PMID: 11309499]
  • [41]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3. [PMID: 16646809]
  • [42]Lönnstedt I, Rimini R, Nilsson P: Empirical bayes microarray ANOVA and grouping cell lines by equal expression levels. Stat Appl Genet Mol Biol 2005, 4:Article7. [PMID: 16646860]
  • [43]Pan W: Incorporating biological information as a prior in an empirical bayes approach to analyzing microarray data. Stat Appl Genet Mol Biol 2005, 4:Article12. [PMID: 16646829]
  • [44]Combat [http://www.bu.edu/jlab/wp-assets/ComBat/Abstract.html webcite]
  • [45]Kupfer P, Guthke R, Pohlers D, Huber R, Koczan D, Kinne RW: Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. BMC Med Genomics 2012, 5:23. [PMID: 22682473]
  • [46]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
  • [47]Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, Guo L, Croner LJ, Boysen C, Fang H, Qian F, Amur S, Bao W, Barbacioru CC, Bertholet V, Chu TM, Collins PJ, Frueh FW, Fuscoe JC, Guo X, Han J, Herman D, Hong H, Kawasaki ES, Li QZ, Luo Y, Ma Y, Mei N, CaoXM, et al.: The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC, Bioinformatics 2008, 9(Suppl 9):S10. [PMID: 18793455 PMCID: 2537561]
  • [48]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23(2):257-8. [PMID: 17098774]
  • [49]Nikitin A, Egorov S, Daraselia N, Mazo I: Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 2003, 19(16):2155-2157. [http://www.ncbi.nlm.nih.gov/pubmed/14594725 webcite]. [PMID: 14594725]
  • [50]Wollbold J, Huber R, Pohlers D, Koczan D, Guthke R, Kinne RW, Gausmann U: Adapted Boolean network models for extracellular matrix formation. BMC Syst Biol 2009, 3:77.
  • [51]Guthke R, Möller U, Hoffmann M, Thies F, Töpfer S: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21(8):1626-1634. [PMID: 15613398]
  • [52]Toepfer S, Guthke R, Driesch D, Woetzel D, Pfaff M: Knowledge Discovery and Emergent Complexity in Bioinformatics, Volume 4366 of Lecture Notes in Computer Science. Edited by Nowé A, Saeys Y, Westra R, Tuyls K. Springer Berlin Heidelberg; 2007:119-130. [http://dx.doi.org/10.1007/978-3-540-71037-0_8 webcite]
  • [53]Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R: Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 2009, 96:86-103. [PMID: 19150482]
  • [54]Gustafsson M, Hörnquist M: Gene expression prediction by soft integration and the elastic net-best performance of the DREAM3 gene expression challenge. PLoS One 2010, 5(2):e9134. [PMID: 20169069]
  • [55]Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD Jr, Fox JW, Chirgwin JM, Guise TA: Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 2007, 21(2):486-98. [PMID: 17068196]
  • [56]Bascom CC, Wolfshohl JR, Madisen L, Webb NR, Purchio AR, Moses HL, Coffey RJ Jr: Complex regulation of transforming growth factor beta 1, beta 2, and beta 3 mRNA expression in mouse fibroblasts and keratinocytes by transforming growth factors beta 1 and beta 2. Mol Cell Biol 1989, 9(12):5508-5515. [PMID: 2586525]
  • [57]Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB, Karin M, Roberts AB: Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol 1990, 10(4):1492-1497. [PMID: 2108318]
  • [58]Kiriyama T, Gillespie MT, Glatz JA, Fukumoto S, Moseley JM, Martin TJ: Transforming growth factor beta stimulation of parathyroid hormone-related protein (PTHrP): a paracrine regulator? Mol Cell Endocrinol 1993, 92:55-62. [PMID: 8472867]
  • [59]Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, Weis JA, Longobardi L, Chytil A, Shimer K, Moses HL: TGF-beta signaling is essential for joint morphogenesis. J Cell Biol 2007, 177(6):1105-1117. [PMID: 17576802]
  • [60]Ruebel KH, Leontovich AA, Tanizaki Y, Jin L, Stilling GA, Zhang S, Coonse K, Scheithauer BW, Lombardero M, Kovacs K, Lloyd RV: Effects of TGFbeta1 on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine 2008, 33:62-76. [PMID: 18401765]
  • [61]Javelaud D, Pierrat MJ, Mauviel A: Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS Lett 2012, 586(14):2016-2025. [PMID: 22609357]
  • [62]Roberts AB, Russo A, Felici A, Flanders KC: Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci 2003, 995:1-10. [PMID: 12814934]
  • [63]Sterling JA, Guelcher SA: Bone structural components regulating sites of tumor metastasis. Curr Osteoporos Rep 2011, 9(2):89-95. [PMID: 21424744]
  • [64]Aomatsu K, Arao T, Sugioka K, Matsumoto K, Tamura D, Kudo K, Kaneda H, Fujita Y, Shimomura Y, Nishio K, Tanaka K: TGF-beta induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line. Invest Ophthalmol Vis Sci 2011, 52(5):2437-2443. [PMID: 21169525]
  • [65]Vallabhapurapu S, Karin M: Regulation and function of NF-kappaB, transcription factors in the immune system. Annu Rev Immunol 2009, 27:693-733. [PMID: 19302050]
  • [66]Brown KD, Claudio E, Siebenlist U: The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res Ther 2008, 10(4):212. [PMID: 18771589]
  • [67]Nieto MA, Sargent MG, Wilkinson DG, Cooke J: Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994, 264(5160):835-839. [PMID: 7513443]
  • [68]Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HH, Chik KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui C: Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 1997, 124:113-123. [PMID: 9006072]
  • [69]Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC: Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 1994, 8(3):277-289. [PMID: 8314082]
  • [70]Funk JL, Cordaro LA, Wei H, Benjamin JB, Yocum DE: Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis. A possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis. J Clin Invest 1998, 101(7):1362-1371. [PMID: 9525978]
  • [71]Amizuka N, Henderson JE, White JH, Karaplis AC, Goltzman D, Sasaki T, Ozawa H: Recent studies on the biological action of parathyroid hormone (PTH)-related peptide (PTHrP) and PTH/PTHrP receptor in cartilage and bone. Histol Histopathol 2000, 15(3):957-970. [PMID: 10963138]
  • [72]Hartmann C, Tabin CJ: Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 2001, 104(3):341-351. [PMID: 11239392]
  • [73]Maioli E, Fortino V, Torricelli C, Arezzini B, Gardi C: Effect of parathyroid hormone-related protein on fibroblast proliferation and collagen metabolism in human skin. Exp Dermatol 2002, 11(4):302-310. [PMID: 12190938]
  • [74]Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y: Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 2004, 18(19):2404-2417. [PMID: 15371327]
  • [75]Haque T, Nakada S, Hamdy RC: A review of FGF18: its expression, signaling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol 2007, 22:97-105. [PMID: 17128416]
  • [76]Presta M, Andrés G, Leali D, Ronca R, Dell’Era P: Inflammatory cells and chemokines sustain FGF2-induced angiogenesis. Eur Cytokine Netw 2009, 20(2):39-50. [PMID: 19541589]
  • [77]Bramlage CP, Häupl T, Kaps C, Ungethüm U, Krenn V, Pruss A, Strutz F, Burmester GR, Müller GA: Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 2006, 8(3):R58. [PMID: 16542506]
  • [78]Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T: Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 2006, 45(6):669-675. [PMID: 16567358]
  文献评价指标  
  下载次数:40次 浏览次数:21次