期刊论文详细信息
BMC Evolutionary Biology
Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms
Yi Ding1  Shuzhen Wang2  Songtao Gui1  Zhihua Wu1 
[1] State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, People’s Republic of China;College of Life Sciences, Huanggang Normal University, Huanggang, Hubei Province 438000, People’s Republic of China
关键词: Bioinformatics analysis;    Expression;    Evolution;    Phenylalanine ammonia-lyase gene;    Nelumbo nucifera;   
Others  :  856571
DOI  :  10.1186/1471-2148-14-100
 received in 2014-03-24, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

Background

Phenylalanine ammonia-lyase (PAL; E.C.4.3.1.5) is a key enzyme of the phenylpropanoid pathway in plant development, and it catalyses the deamination of phenylalanine to trans-cinnamic acid, leading to the production of secondary metabolites. This enzyme has been identified in many organisms, ranging from prokaryotes to higher plants. Because Nelumbo nucifera is a basal dicot rich in many secondary metabolites, it is a suitable candidate for research on the phenylpropanoid pathway.

Results

Three PAL members, NnPAL1, NnPAL2 and NnPAL3, have been identified in N. nucifera using genome-wide analysis. NnPAL1 contains two introns; however, both NnPAL2 and NnPAL3 have only one intron. Molecular and evolutionary analysis of NnPAL1 confirms that it is an ancient PAL member of the angiosperms and may have a different origin. However, PAL clusters, except NnPAL1, are monophyletic after the split between dicots and monocots. These observations suggest that duplication events remain an important occurrence in the evolution of the PAL gene family. Molecular assays demonstrate that the mRNA of the NnPAL1 gene is 2343 bp in size and encodes a 717 amino acid polypeptide. The optimal pH and temperature of the recombinant NnPAL1 protein are 9.0 and 55°C, respectively. The NnPAL1 protein retains both PAL and weak TAL catalytic activities with Km values of 1.07 mM for L-phenylalanine and 3.43 mM for L-tyrosine, respectively. Cis-elements response to environmental stress are identified and confirmed using real-time PCR for treatments with abscisic acid (ABA), indoleacetic acid (IAA), ultraviolet light, Neurospora crassa (fungi) and drought.

Conclusions

We conclude that the angiosperm PAL genes are not derived from a single gene in an ancestral angiosperm genome; therefore, there may be another ancestral duplication and vertical inheritance from the gymnosperms. The different evolutionary histories for PAL genes in angiosperms suggest different mechanisms of functional regulation. The expression patterns of NnPAL1 in response to stress may be necessary for the survival of N. nucifera since the Cretaceous Period. The discovery and characterisation of the ancient NnPAL1 help to elucidate PAL evolution in angiosperms.

【 授权许可】

   
2014 Wu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723033605949.pdf 3209KB PDF download
839KB Image download
58KB Image download
59KB Image download
107KB Image download
186KB Image download
571KB Image download
【 图 表 】

【 参考文献 】
  • [1]Dixon RA, Paiva NL: Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7:1085-1097.
  • [2]Pellegrini L, Rohfritsch O, Fritig B, Legrand M: Phenylalanine ammonia-lyase in tobacco: molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol 1994, 106:877-886.
  • [3]Hamberger B, Ellis M, Friedmann M, de Azevedo SC, Barbazuk B, Douglas CJ: Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 2007, 85(12):1182-1201.
  • [4]Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA: Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 2010, 11(6):829-846.
  • [5]Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W: Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 2003, 133(3):1051-1071.
  • [6]Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y: Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 2006, 172(1):47-62.
  • [7]MacDonald MJ, D’Cunha GB: A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 2007, 85:273-282.
  • [8]Kim W, Erlandsen H, Surendran S, Stevens RC, Gamez A, Michols-Matalon K, Tyring SK, Matalon R: Trends in enzyme therapy forphenylketonuria. Mol Ther 2004, 10:220-224.
  • [9]Kyndt JA, Meyer TE, Cusanovich MA, Van Beeumen JJ: Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett 2002, 512:240-244.
  • [10]Moffitt MC, Louie GV, Bowman ME, Pence J, Noel JP, Moore BS: Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 2007, 46:1004-1012.
  • [11]Ogata K, Uchiyama K, Yamada H: Metabolism of aromatic amino acid in microorganisms. Part I: formation of cinnamic acid from phenylalanine. Agric Biol Chem 1967, 31:200-206.
  • [12]Xiang L, Moore BS: Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. J Bacteriol 2005, 187:4286-4289.
  • [13]Xu F, Cai R, Cheng S, Du H, Wang Y, Cheng S: Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 2008, 7:721-729.
  • [14]Okada T, Mikage M, Sekita S: Molecular characterization of the phenylalanine Ammonia-Lyase from Ephedra sinica. Biol Pharm Bull 2008, 31:2194-2199.
  • [15]Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y: Structure and some characterization of the gene for phenylalanine ammonialyase from rice plants. Eur J Biochem 1989, 185:19-25.
  • [16]Lu BB, Du Z, Ding RX, Zhang L, Yu XJ, Liu CH, Chen WS: Cloning and characterization of a differentially expressed phenylalanine ammonia-lyase gene (IiPAL) after genome duplication from tetraploid Isatis indigotica Fort. J Integr Plant Biol 2006, 48(12):1439-1449.
  • [17]Wanner LA, Li G, Ware D, Somssich IE, Davis KR: The phenylalanine ammonia lyase gene family in Arabidopsis thaliana. Plant Mol Biol 1995, 27:327-338.
  • [18]Gao JH, Zhang SW, Cai F, Zheng XJ, Lin N, Qin XB, Ou YC, Gu XP, Zhu XH, Xu Y, Chen F: Characterization, and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L. Mol Biol Rep 2012, 39:3443-3452.
  • [19]Jiang YM, Xia N, Li XD, Shen WB, Liang LJ, Wang CY, Wang R, Peng F, Xia B: Molecular cloning and characterization of a phenylalanine ammonia-lyase gene (LrPAL) from Lycoris radiate. Mol Biol Rep 2011, 38:1935-1940.
  • [20]Ritter H, Schulz GE: Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 2004, 16:3426-3436.
  • [21]Joos HJ, Hahlbrock K: Phenylalanine ammonia-lyase in potato (Solanum tuberosumL.). Genomic complexity, structural comparison of two selected genes and modes of expression. Eur J Biochem 1992, 204:621-629.
  • [22]Chang A, Lim MH, Lee SW, Robb EJ, Nazar RN: Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. J Biol Chem 2008, 283:33591-33601.
  • [23]Huang JL, Gu M, Lai ZB, Fan BF, Shi K, Zhou YH, Yu JQ, Chen ZX: Functional analysis of the arabidopsis PAL Gene family in plant growth, development, and response to environmental stress. Plant Physiol 2010, 153:1526-1538.
  • [24]Schwede TF, Re’tey J, Schulz GE: Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Biochemistry 1999, 38:5355-5361.
  • [25]Watanabe SK, Hernandez-Velazco G, Iturbe-Chinas F, Lopez-Munguia A: Phenylalanine ammonia lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: application for phenylalanine and tyrosine deamination. World J Microbiol Biotechnol 1992, 8:406-410.
  • [26]Mukherjee PK, Mukherjee D, Maji AK, Rai S, Heinrich M: The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. J Pharm Pharmacol 2009, 61(4):407-422.
  • [27]Kashiwada Y, Aoshima A, Ikeshiro Y, Chen YP, Furukawa H, Itoigawa M, Fujioka T, Mihashi K, Cosentino LM, Morris-Natschke SL, Lee KH: Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg Med Chem 2005, 13:443-448.
  • [28]Hsu J: Late cretaceous and cenozoic vegetation in China, emphasizing their connections with north America. Ann Mo Bot Gard 1983, 70:490-508.
  • [29]Ming R, Vanburen R, Liu Y, Yang M, Han Y, Li LT, Zhang Q, Kim MJ, Schatz MC, Campbell M, Li J, Bowers JE, Tang H, Lyons E, Ferguson AA, Narzisi G, Nelson DR, Blaby-Haas CE, Gschwend AR, Jiao Y, Der JP, Zeng F, Han J, Min XJ, Hudson KA, Singh R, Grennan AK, Karpowicz SJ, Watling JR, Ito K, et al.: Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 2013, 14:R41. BioMed Central Full Text
  • [30]Wang Y, Fan G, Liu Y, Sun F, Shi C, Liu X, Peng J, Chen W, Huang X, Cheng S, Liu Y, Liang X, Zhu H, Bian C, Zhong L, Lv T, Dong H, Liu W, Zhong X, Chen J, Quan Z, Wang Z, Tan B, Lin C, Mu F, Xu X, Ding Y, Guo AY, Wang J, Ke W: The sacred lotus genome provides insights into the evolution of flowering plants. Plant J 2013, 76:557-567.
  • [31]Schmidt K, Heberle B, Kurrasch J, Nehls R, Stahl DJ: Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene. Plant Mol Biol 2004, 55:835-852.
  • [32]Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 2003, 141:399-436.
  • [33]Rösler J, Krefel F, Amrhein N, Sohmid J: Maize phenylalanine ammonia-lyase activity. Plant Physiol 1997, 113:175-179.
  • [34]Bagal UR, Leebens-Mack JH, Lorenz WW, Dean JFD: The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genomics 2012, 13(Suppl.3):S1.
  • [35]Hsieh LS, Hsieh YL, Yeh CS, Cheng CY, Yang CC, Lee PD: Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from B.oldhamii. Mol Biol Rep 2011, 38:283-290.
  • [36]Tan RX, Zou WX: Endophytes: a rich source of functional metabolites. Nat Prod Rep 2001, 18:448-459.
  • [37]Fiona CC, Laurence BD, Norman GL: The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 2004, 65:1557-1564.
  • [38]Lee SW, Robb J, Nazar RN: Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum). J Biol Chem 1992, 267:11824-11830.
  • [39]Chaw SM, Zhaekikh A, Sung HM, Lau TC, Li WH: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 1997, 14:56-68.
  • [40]Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008, 9:605-618.
  • [41]Bergthorsson U, Adams KL, Thomason B, Palmer JD: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 2003, 424:197-201.
  • [42]Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 2004, 101:17747-17752.
  • [43]Hao W, Richardson AO, Zheng Y, Palmer JD: Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci USA 2010, 107:21576-21581.
  • [44]Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa M, Manhart JR: Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA 2008, 105:17867-17871.
  • [45]Yang J, Huang JX, Gu HY, Zhong Y, Yang ZH: Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 2002, 19:1752-1759.
  • [46]Kumar A, Ellis BE: The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 2001, 127:230-239.
  • [47]Röther D, Poppe L, Morlock G, Viergutz S, Rétey J: An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Eur J Biochem 2002, 269:3065-3075.
  • [48]Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP: Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett 1999, 457:47-52.
  • [49]Xu EY, Moore FL, Reijo Pera RA: A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in all metazoans. Proc Natl Acad Sci USA 2001, 98:7414-7419.
  • [50]Li JK, Zhou EX, Li DX, Huang SQ: Multiple northern refugia for Asian sacred lotus, an aquatic plant with characteristics of ice-age endurance. Aust J Bot 2010, 58:463-472.
  • [51]Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002, 00:2.3.1-2.3.22.
  • [52]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [53]Guindon S, Delsuc F, Dufayard JF, Gascuel O: Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009, 537:113-137.
  • [54]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [55]Gambino G, Perrone I, Gribaudo I: A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 2008, 19:520-525.
  • [56]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [57]D’Cunha GB, Satyanarayan S, Nair PM: Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochemistry 1996, 42:17-20.
  文献评价指标  
  下载次数:58次 浏览次数:35次