期刊论文详细信息
BMC Genomics
EgoNet: identification of human disease ego-network modules
Tianwei Yu1  Zhaohui Qin1  Yun Bai3  Rendong Yang2 
[1] Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd, N.E, Atlanta, GA, USA;Current address: Minnesota Supercomputing Institute for Advanced Computational Research (MSI), University of Minnesota, Minneapolis, MN, USA;Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA
关键词: Microarray;    Biological networks;    Cancer biology;    Machine learning;    Network medicine;    Gene expression;   
Others  :  1217400
DOI  :  10.1186/1471-2164-15-314
 received in 2013-12-10, accepted in 2014-04-16,  发布年份 2014
PDF
【 摘 要 】

Background

Mining novel biomarkers from gene expression profiles for accurate disease classification is challenging due to small sample size and high noise in gene expression measurements. Several studies have proposed integrated analyses of microarray data and protein-protein interaction (PPI) networks to find diagnostic subnetwork markers. However, the neighborhood relationship among network member genes has not been fully considered by those methods, leaving many potential gene markers unidentified. The main idea of this study is to take full advantage of the biological observation that genes associated with the same or similar diseases commonly reside in the same neighborhood of molecular networks.

Results

We present EgoNet, a novel method based on egocentric network-analysis techniques, to exhaustively search and prioritize disease subnetworks and gene markers from a large-scale biological network. When applied to a triple-negative breast cancer (TNBC) microarray dataset, the top selected modules contain both known gene markers in TNBC and novel candidates, such as RAD51 and DOK1, which play a central role in their respective ego-networks by connecting many differentially expressed genes.

Conclusions

Our results suggest that EgoNet, which is based on the ego network concept, allows the identification of novel biomarkers and provides a deeper understanding of their roles in complex diseases.

【 授权许可】

   
2014 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706095620732.pdf 1525KB PDF download
Figure 3. 72KB Image download
Figure 2. 165KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Barabási A-L: Network medicine–from obesity to the “diseasome”. N Engl J Med 2007, 357:404-407.
  • [2]Barabási A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12:56-68.
  • [3]Chan SY, Loscalzo J: The emerging paradigm of network medicine in the study of human disease. Circ Res 2012, 111:359-374.
  • [4]Boutros PC, Lau SK, Pintilie M, Liu N, Shepherd FA, Der SD, Tsao M-S, Penn LZ, Jurisica I: Prognostic gene signatures for non-small-cell lung cancer. Proc Natl Acad Sci U S A 2009, 106:2824-2828.
  • [5]Stratford JK, Bentrem DJ, Anderson JM, Fan C, Volmar KA, Marron JS, Routh ED, Caskey LS, Samuel JC, Der CJ, Thorne LB, Calvo BF, Kim HJ, Talamonti MS, Iacobuzio-Donahue CA, Hollingsworth MA, Perou CM, Yeh JJ: A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med 2010, 7:e1000307.
  • [6]van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.
  • [7]Yeoh E-J, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui C-H, Evans WE, Naeve C, Wong L, Downing JR: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1:133-143.
  • [8]Venet D, Dumont JE, Detours V: Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 2011, 7:e1002240.
  • [9]Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L: The human disease network. Proc Natl Acad Sci U S A 2007, 104:8685-8690.
  • [10]Chen L, Xuan J, Riggins RB, Wang Y, Clarke R: Identifying protein interaction subnetworks by a bagging Markov random field-based method. Nucleic Acids Res 2013, 41:e42.
  • [11]Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.
  • [12]Ciriello G, Cerami E, Sander C, Schultz N: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 2012, 22:398-406.
  • [13]Hwang T, Tian Z, Kuangy R, Kocher J-P: Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene Expressions for Cancer Outcome Prediction. In Eighth IEEE International Conference on Data Mining: 2008. Washington DC: IEEE Computer Society; 2008:293-302.
  • [14]Nie Y, Yu J: Mining breast cancer genes with a network based noise-tolerant approach. BMC Syst Biol 2013, 7:49. BioMed Central Full Text
  • [15]Pujana MA, Han J-DJ, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual J-F, Levine D, Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Solé X, Hernández P, Lázaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, et al.: Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007, 39:1338-1349.
  • [16]Su J, Yoon B-J, Dougherty ER: Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network. BMC Bioinforma 2010, 11(Suppl 6):S8. BioMed Central Full Text
  • [17]Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL: Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 2009, 27:199-204.
  • [18]Winter C, Kristiansen G, Kersting S, Roy J, Aust D, Knösel T, Rümmele P, Jahnke B, Hentrich V, Rückert F, Niedergethmann M, Weichert W, Bahra M, Schlitt HJ, Settmacher U, Friess H, Büchler M, Saeger H-D, Schroeder M, Pilarsky C, Grützmann R: Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 2012, 8:e1002511.
  • [19]Wang X, Gulbahce N, Yu H: Network-based methods for human disease gene prediction. Brief Funct Genomics 2011, 10:280-293.
  • [20]Dutkowski J, Ideker T: Protein networks as logic functions in development and cancer. PLoS Comput Biol 2011, 7:e1002180.
  • [21]Zhu Y, Shen X, Pan W: Network-based support vector machine for classification of microarray samples. BMC Bioinforma 2009, 10(Suppl 1):S21. BioMed Central Full Text
  • [22]Borgatti SP, Mehra A, Brass DJ, Labianca G: Network analysis in the social sciences. Science 2009, 323:892.
  • [23]Jordán F, Nguyen T-P, Liu W-C: Studying protein-protein interaction networks: a systems view on diseases. Brief Funct Genomics 2012, 11:497-504.
  • [24]Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R: ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 2011, 39:D712-D717.
  • [25]Goodman LA: Snowball sampling. Ann Math Stat 1961, 32:148-170.
  • [26]Cortes C, Vapnik V: Support-vector networks. Mach Learn 1995, 20:273-297.
  • [27]Cover T, Hart P: Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967, 13:21-27.
  • [28]Breiman LEO: Random forests. Mach Learn 2001, 45:5-32.
  • [29]Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Li Y, Desmedt C, Sotiriou C, Szallasi Z, Iglehart JD, Richardson AL, Wang ZC: Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med 2010, 16:214-218.
  • [30]Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N: Triple-negative breast cancer–current status and future directions. Ann Oncol 2009, 20:1913-1927.
  • [31]Cancer Genome Atlas N: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490(7418):61-70.
  • [32]Das J, Yu H: HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol 2012, 6:92. BioMed Central Full Text
  • [33]Buchholz TA, Weil MM, Story MD, Strom EA, Brock WA, McNeese MD: Tumor suppressor genes and breast cancer. Radiat Oncol Investig 1999, 7:55-65.
  • [34]Kato M, Yano K, Matsuo F, Saito H, Katagiri T, Kurumizaka H, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G, Nagawa H, Nakamura Y, Miki Y: Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 2000, 45:133-137.
  • [35]Srinivasan D, Plattner R: Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 2006, 66:5648-5655.
  • [36]Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D, Gewirtz AM, Calabretta B: Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 1991, 253(5019):562-565.
  • [37]Parker BC, Engels M, Annala M, Zhang W: Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol 2014, 232(1):4-15.
  • [38]An X, Tiwari AK, Sun Y, Ding PR, Ashby CR Jr, Chen ZS: BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 2010, 34(10):1255-1268.
  • [39]Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA: Crystal structure of a Rad51 filament. Nat Struct Mol Biol 2004, 11(8):791-796.
  • [40]Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ, Stasiak A, Xia B, Masson JY: Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 2010, 17(10):1247-1254.
  • [41]Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK: The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 2000, 275(31):23899-23903.
  • [42]Le Calvez-Kelm F, Oliver J, Damiola F, Forey N, Robinot N, Durand G, Voegele C, Vallee MP, Byrnes G, Registry BC, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV, Lesueur F: RAD51 and breast cancer susceptibility: no evidence for rare variant association in the Breast Cancer Family Registry study. PLoS One 2012, 7(12):e52374.
  • [43]Ricks-Santi LJ, Sucheston LE, Yang Y, Freudenheim JL, Isaacs CJ, Schwartz MD, Dumitrescu RG, Marian C, Nie J, Vito D, Edge SB, Shields PG: Association of Rad51 polymorphism with DNA repair in BRCA1 mutation carriers and sporadic breast cancer risk. BMC Cancer 2011, 11:278. BioMed Central Full Text
  • [44]Smolarz B, Zadrożny M, Duda-Szymańska J, Makowska M, Samulak D, Michalska MM, Mojs E, Bryś M, Forma E, Romanowicz-Makowska H: RAD51 genotype and triple-negative breast cancer (TNBC) risk in Polish women. Pol J Pathol 2013, 64:39-43.
  • [45]Mercier P-L, Bachvarova M, Plante M, Gregoire J, Renaud M-C, Ghani K, Têtu B, Bairati I, Bachvarov D: Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol 2011, 5:438-453.
  • [46]Berger AH, Niki M, Morotti A, Taylor BS, Socci ND, Viale A, Brennan C, Szoke J, Motoi N, Rothman PB, Teruya-Feldstein J, Gerald WL, Ladanyi M, Pandolfi PP: Identification of DOK genes as lung tumor suppressors. Nat Genet 2010, 42:216-223.
  • [47]Goel RK, Miah S, Black K, Kalra N, Dai C, Lukong KE: The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. FEBS J 2013, 280(18):4539-4559.
  • [48]Nelms K, Snow AJ, Noben-Trauth K: Dok1 encoding p62(dok) maps to mouse chromosome 6 and human chromosome 2 in a region of translocation in chronic lymphocytic leukemia. Genomics 1998, 53(2):243-245.
  • [49]Miah S, Goel RK, Dai C, Kalra N, Beaton-Brown E, Bagu ET, Bonham K, Lukong KE: BRK Targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 2014, 9(2):e87684.
  • [50]Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, Qi R, Matzuk AJ, Song X, Madoux F, Hodder P, Chase P, Griffin PR, Zhou S, Liao L, Xu J, O'Malley BW: Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 2014, 74(5):1506-1517.
  • [51]Paruthiyil S, Cvoro A, Tagliaferri M, Cohen I, Shtivelman E, Leitman DC: Estrogen receptor beta causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat 2011, 129(3):777-784.
  • [52]Wagner M, Koslowski M, Paret C, Schmidt M, Tureci O, Sahin U: NCOA3 is a selective co-activator of estrogen receptor alpha-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer 2013, 13:570. BioMed Central Full Text
  • [53]Siouda M, Yue J, Shukla R, Guillermier S, Herceg Z, Creveaux M, Accardi R, Tommasino M, Sylla BS: Transcriptional regulation of the human tumor suppressor DOK1 by E2F1. Mol Cell Biol 2012, 32(23):4877-4890.
  • [54]Mc Ilroy M, Fleming FJ, Buggy Y, Hill AD, Young LS: Tamoxifen-induced ER-alpha-SRC-3 interaction in HER2 positive human breast cancer; a possible mechanism for ER isoform specific recurrence. Endocr Relat Cancer 2006, 13(4):1135-1145.
  • [55]Nahta R: Pharmacological strategies to overcome HER2 cross-talk and Trastuzumab resistance. Curr Med Chem 2012, 19(7):1065-1075.
  • [56]Burness ML, Grushko TA, Olopade OI: Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker? Cancer J 2010, 16(1):23-32.
  • [57]Liu X, Yue J, Frey RS, Zhu Q, Mulder KM: Transforming growth factor beta signaling through Smad1 in human breast cancer cells. Cancer Res 1998, 58:4752-4757.
  • [58]Scollen S, Luccarini C, Baynes C, Driver K, Humphreys MK, Garcia-Closas M, Figueroa J, Lissowska J, Pharoah PD, Easton DF, Hesketh R, Metcalfe JC, Dunning AM: TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2011, 20:1112-1119.
  • [59]Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J, Hortobágyi GN: High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist 2012, 17:766-774.
  • [60]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [61]Jonsson PF, Bates PA: Global topological features of cancer proteins in the human interactome. Bioinformatics 2006, 22:2291-2297.
  • [62]Wachi S, Yoneda K, Wu R: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 2005, 21:4205-4208.
  文献评价指标  
  下载次数:55次 浏览次数:45次