期刊论文详细信息
BMC Microbiology
Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions
Rob Van Houdt4  Pierre Cornelis2  Natalie Leys4  Abram Aertsen3  Ruddy Wattiez1  Baptiste Leroy1  Aurélie Crabbé5 
[1]Department of Proteomics and Microbiology, Interdisciplinary Center of Mass Spectrometry (CISMa), University of Mons (UMONS), Mons, Belgium
[2]Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium
[3]Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
[4]Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
[5]Present address: The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ, 85287, USA
关键词: Stress resistance;    Shaking speed;    RecA;    SOS response;    Elongation;    Filamentation;    Pseudomonas putida KT2440;   
Others  :  1144857
DOI  :  10.1186/1471-2180-12-282
 received in 2012-06-22, accepted in 2012-11-16,  发布年份 2012
PDF
【 摘 要 】

Background

Pseudomonas putida exerts a filamentous phenotype in response to environmental stress conditions that are encountered during its natural life cycle. This study assessed whether P. putida filamentation could confer survival advantages. Filamentation of P. putida was induced through culturing at low shaking speed and was compared to culturing in high shaking speed conditions, after which whole proteomic analysis and stress exposure assays were performed.

Results

P. putida grown in filament-inducing conditions showed increased resistance to heat and saline stressors compared to non-filamented cultures. Proteomic analysis showed a significant metabolic change and a pronounced induction of the heat shock protein IbpA and recombinase RecA in filament-inducing conditions. Our data further indicated that the associated heat shock resistance, but not filamentation, was dependent of RecA.

Conclusions

This study provides insights into the altered metabolism of P. putida in filament-inducing conditions, and indicates that the formation of filaments could potentially be utilized by P. putida as a survival strategy in its hostile, recurrently changing habitat.

【 授权许可】

   
2012 Crabbé et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331032828276.pdf 871KB PDF download
Figure 4. 18KB Image download
Figure 3. 23KB Image download
Figure 2. 54KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D: Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 2011, 35(2):299-323.
  • [2]Dixon RA: Natural products and plant disease resistance. Nature 2001, 411(6839):843-847.
  • [3]Manzanera M, Aranda-Olmedo I, Ramos JL, Marques S: Molecular characterization of Pseudomonas putida KT2440 rpoH gene regulation. Microbiology 2001, 147(Pt 5):1323-1330.
  • [4]Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS: Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 2008, 56(5):453-457.
  • [5]Tegos G, Stermitz FR, Lomovskaya O, Lewis K: Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 2002, 46(10):3133-3141.
  • [6]Jensen RH, Woolfolk CA: Formation of filaments by Pseudomonas putida. Appl Environ Microbiol 1985, 50(2):364-372.
  • [7]Justice SS, Hunstad DA, Cegelski L, Hultgren SJ: Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 2008, 6(2):162-168.
  • [8]Boberek JM, Stach J, Good L: Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 2010, 5(10):e13745.
  • [9]Mattick KL, Jorgensen F, Legan JD, Cole MB, Porter J, Lappin-Scott HM, Humphrey TJ: Survival and filamentation of Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 at low water activity. Appl Environ Microbiol 2000, 66(4):1274-1279.
  • [10]Shaw MK: Formation of filaments and synthesis of macromolecules at temperatures below the minimum for growth of Escherichia coli. J Bacteriol 1968, 95(1):221-230.
  • [11]Steinberger RE, Allen AR, Hansa HG, Holden PA: Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturates biofilms. Microb Ecol 2002, 43(4):416-423.
  • [12]Chang WS, Halverson LJ: Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms. J Bacteriol 2003, 185(20):6199-6204.
  • [13]Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ: Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 2004, 101(5):1333-1338.
  • [14]Rosenberger CM, Finlay BB: Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 2002, 277(21):18753-18762.
  • [15]Maier U, Buchs J: Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 2001, 7(2):99-106.
  • [16]Michel B: After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 2005, 3(7):e255.
  • [17]McCool JD, Long E, Petrosino JF, Sandler HA, Rosenberg SM, Sandler SJ: Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol Microbiol 2004, 53(5):1343-1357.
  • [18]Wortinger MA, Quardokus EM, Brun YV: Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus. Mol Microbiol 1998, 29(4):963-973.
  • [19]Narberhaus F: Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002, 66(1):64-93. table of contents
  • [20]Kato K, Hasegawa K, Goto S, Inaguma Y: Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 1994, 269(15):11274-11278.
  • [21]Atichartpongkul S, Loprasert S, Vattanaviboon P, Whangsuk W, Helmann JD, Mongkolsuk S: Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology 2001, 147(Pt 7):1775-1782.
  • [22]Bellapadrona G, Ardini M, Ceci P, Stefanini S, Chiancone E: Dps proteins prevent Fenton-mediated oxidative damage by trapping hydroxyl radicals within the protein shell. Free Radic Biol Med 2010, 48(2):292-297.
  • [23]Vinckx T, Wei Q, Matthijs S, Noben JP, Daniels R, Cornelis P: A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation. Biometals 2011, 24(3):523-532.
  • [24]Williams HD, Ziosnik JEA, Ryall B: Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 2007, 52:1-71.
  • [25]Yamano Y, Nishikawa T, Komatsu Y: Involvement of the RpoN protein in the transcription of the oprE gene in Pseudomonas aeruginosa. FEMS Microbiol Lett 1998, 162(1):31-37.
  • [26]Filiatrault MJ, Wagner VE, Bushnell D, Haidaris CG, Iglewski BH, Passador L: Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect Immun 2005, 73(6):3764-3772.
  • [27]Nishimura T, Teramoto H, Inui M, Yukawa H: Gene expression profiling of Corynebacterium glutamicum during anaerobic nitrate respiration: induction of the SOS response for cell survival. J Bacteriol 2011, 193(6):1327-1333.
  • [28]Sellars MJ, Hall SJ, Kelly DJ: Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 2002, 184(15):4187-4196.
  • [29]Aertsen A, Michiels CW: SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Res Microbiol 2005, 156(2):233-237.
  • [30]Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW: An SOS response induced by high pressure in Escherichia coli. J Bacteriol 2004, 186(18):6133-6141.
  • [31]Kawarai T, Wachi M, Ogino H, Furukawa S, Suzuki K, Ogihara H, Yamasaki M: SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Appl Microbiol Biotechnol 2004, 64(2):255-262.
  • [32]Gottesman S, Halpern E, Trisler P: Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12. J Bacteriol 1981, 148(1):265-273.
  • [33]Aertsen A, Michiels CW: Upstream of the SOS response: figure out the trigger. Trends Microbiol 2006, 14(10):421-423.
  • [34]Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I: Stress-induced mutagenesis in bacteria. Science 2003, 300(5624):1404-1409.
  • [35]Humayun MZ: SOS and Mayday: multiple inducible mutagenic pathways in Escherichia coli. Mol Microbiol 1998, 30(5):905-910.
  • [36]Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN: SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004, 305(5690):1629-1631.
  • [37]Aertsen A, Michiels CW: Mrr instigates the SOS response after high pressure stress in Escherichia coli. Mol Microbiol 2005, 58(5):1381-1391.
  • [38]Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P: Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 2010, 12(6):1545-1564.
  • [39]Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R: Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 2010, 10(12):2281-2291.
  文献评价指标  
  下载次数:17次 浏览次数:6次