期刊论文详细信息
BMC Structural Biology
Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor
Robert V Talanian6  Kevin Woller7  Neil Wishart1  Lu Wang1  Jeffrey Voss6  Medha Tomlinson2  Nigel St John Moore3  Silvino Sousa2  Ramkrishna Sadhukhan2  Valerie Pivorunas8  Gary Overmeyer2  Doug Marcotte5  Richard W Dixon4  Andrew Burchat1  David W Borhani3  David Banach6  Eric R Goedken6  Maria A Argiriadi6 
[1]Department of Chemistry, Abbott Laboratories, Worcester, MA, USA
[2]Department of Biologics, Abbott Laboratories, Worcester, MA, USA
[3]Present Address: D. E. Shaw Research, New York, NY, USA
[4]Present Address: Vertex Pharmaceuticals, Cambridge, MA, USA
[5]Present Address: Department of Physical Biochemistry, Biogen Idec, Cambridge, MA, USA
[6]Department of Molecular & Cellular Pharmacology, Abbott Laboratories, Worcester, MA, USA
[7]Advanced Technologies, Abbott Laboratories, Abbott Park, IL, USA
[8]Department of Molecular Cell Biology, Harvard University, Cambridge, MA, USA
关键词: Proteolysis;    Crystallization;    Jak kinase;    Tyk2;   
Others  :  1091930
DOI  :  10.1186/1472-6807-12-22
 received in 2012-03-12, accepted in 2012-07-27,  发布年份 2012
PDF
【 摘 要 】

Background

Structure-based drug design (SBDD) can accelerate inhibitor lead design and optimization, and efficient methods including protein purification, characterization, crystallization, and high-resolution diffraction are all needed for rapid, iterative structure determination. Janus kinases are important targets that are amenable to structure-based drug design. Here we present the first mouse Tyk2 crystal structures, which are complexed to 3-aminoindazole compounds.

Results

A comprehensive construct design effort included N- and C-terminal variations, kinase-inactive mutations, and multiple species orthologs. High-throughput cloning and expression methods were coupled with an abbreviated purification protocol to optimize protein solubility and stability. In total, 50 Tyk2 constructs were generated. Many displayed poor expression, inadequate solubility, or incomplete affinity tag processing. One kinase-inactive murine Tyk2 construct, complexed with an ATP-competitive 3-aminoindazole inhibitor, provided crystals that diffracted to 2.5–2.6 Å resolution. This structure revealed initial “hot-spot” regions for SBDD, and provided a robust platform for ligand soaking experiments. Compared to previously reported human Tyk2 inhibitor crystal structures (Chrencik et al. (2010) J Mol Biol 400:413), our structures revealed a key difference in the glycine-rich loop conformation that is induced by the inhibitor. Ligand binding also conferred resistance to proteolytic degradation by thermolysin. As crystals could not be obtained with the unliganded enzyme, this enhanced stability is likely important for successful crystallization and inhibitor soaking methods.

Conclusions

Practical criteria for construct performance and prioritization, the optimization of purification protocols to enhance protein yields and stability, and use of high-throughput construct exploration enable structure determination methods early in the drug discovery process. Additionally, specific ligands stabilize Tyk2 protein and may thereby enable crystallization.

【 授权许可】

   
2012 Argiriadi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128175221624.pdf 2444KB PDF download
Figure 9. 11KB Image download
Figure 8. 16KB Image download
Figure 7. 12KB Image download
Figure 6. 56KB Image download
Figure 5. 194KB Image download
Figure 4. 205KB Image download
Figure 3. 49KB Image download
Figure 2. 23KB Image download
Figure 1. 14KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Darnell JE Jr: STATs and gene regulation. Science 1997, 277(5332):1630-1635.
  • [2]Horvath CM: STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000, 25(10):496-502.
  • [3]Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O'Shea JJ: The Janus kinases (Jaks). Genome Biol 2004, 5(12):253. BioMed Central Full Text
  • [4]Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ: Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 2004, 202:139-156.
  • [5]Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, Takada H, Hara T, Kawamura N, Ariga T, et al.: Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006, 25(5):745-755.
  • [6]Ortmann RA, Cheng T, Visconti R, Frucht DM, O'Shea JJ: Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. Arthritis Res 2000, 2(1):16-32. BioMed Central Full Text
  • [7]Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, McCoy B, Bogdan C, Decker T, Brem G, et al.: Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 2000, 13(4):549-560.
  • [8]Liu KD, Gaffen SL, Goldsmith MA, Greene WC: Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Curr Biol 1997, 7(11):817-826.
  • [9]Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN: Defective lymphoid development in mice lacking Jak3. Science 1995, 270(5237):800-802.
  • [10]Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ: IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004, 202:96-105.
  • [11]Murray PJ: The JAK-STAT signaling pathway: input and output integration. J Immunol 2007, 178(5):2623-2629.
  • [12]Kudlacz E, Perry B, Sawyer P, Conklyn M, McCurdy S, Brissette W, Flanagan And M, Changelian P: he novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am J Transplant 2004, 4(1):51-57.
  • [13]Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, Rizzuti BJ, Sawyer PS, Perry BD, Brissette WH, et al.: Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 2003, 302(5646):875-878.
  • [14]Ghoreschi K, Laurence A, O'Shea JJ: Selectivity and therapeutic inhibition of kinases: to be or not to be? Nat Immunol 2009, 10(4):356-360.
  • [15]West K: CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 2009, 10(5):491-504.
  • [16]Sorbera LA, Serradell N, Bolós J, Rosa E, Bozzo J: CP-690550. Drugs of the Future 2007, 32(8):674-680.
  • [17]Tanaka Y, Suzuki M, Nakamura H, Toyoizumi S, Zwillich SH: Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken) 2011, 63(8):1150-1158.
  • [18]Kremer JM, Cohen S, Wilkinson BE, Connell CA, French JL, Gomez-Reino J, Gruben D, Kanik KS, Krishnaswami S, Pascual-Ramos V, et al.: A Phase 2B dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate alone. Arthritis Rheum 2012.
  • [19]Fleischmann R, Cutolo M, Genovese MC, Lee EB, Kanik KS, Sadis S, Connell CA, Gruben D, Krishnaswami S, Wallenstein G, et al.: Phase 2B dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to DMARDs. Arthritis Rheum 2012.
  • [20]Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, Estrov Z, Fridman JS, Bradley EC, Erickson-Viitanen S, et al.: Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010, 363(12):1117-1127.
  • [21]Lankford CS, Frucht DM: A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol 2003, 73(1):49-56.
  • [22]Oyamada A, Ikebe H, Itsumi M, Saiwai H, Okada S, Shimoda K, Iwakura Y, Nakayama KI, Iwamoto Y, Yoshikai Y, et al.: Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis. J Immunol 2009, 183(11):7539-7546.
  • [23]Spach KM, Noubade R, McElvany B, Hickey WF, Blankenhorn EP, Teuscher C: A single nucleotide polymorphism in Tyk2 controls susceptibility to experimental allergic encephalomyelitis. J Immunol 2009, 182(12):7776-7783.
  • [24]Boggon TJ, Li Y, Manley PW, Eck MJ: Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood 2005, 106(3):996-1002.
  • [25]Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, et al.: The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2006, 107(1):176-183.
  • [26]Madhusudan , Trafny EA, Xuong NH, Adams JA, Ten Eyck LF, Taylor SS, Sowadski JM: cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci 1994, 3(2):176-187.
  • [27]Chrencik JE, Patny A, Leung IK, Korniski B, Emmons TL, Hall T, Weinberg RA, Gormley JA, Williams JM, Day JE, et al.: Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6. J Mol Biol 2010, 400(3):413-433.
  • [28]Alicea-Velazquez NL, Boggon TJ: The use of structural biology in Janus kinase targeted drug discovery. Curr Drug Targets 2011, 12(4):546-555.
  • [29]Brunger AT: Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355(6359):472-475.
  • [30]McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ: Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 2005, 61(Pt 4):458-464.
  • [31]Read RJ: Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr 2001, 57(Pt 10):1373-1382.
  • [32]Storoni LC, McCoy AJ, Read RJ: Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 3):432-438.
  • [33]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53(Pt 3):240-255.
  • [34]Jones TA, Zou JY, Cowan SW, Kjeldgaard M: Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 1991, 47(Pt 2):110-119.
  • [35]Blanc E, Roversi P, Vonrhein C, Flensburg C, Lea SM, Bricogne G: Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2210-2221.
  • [36]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2126-2132.
  • [37]Collaborative Computational Project N: The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994, 50(Pt 5):760-763.
  • [38]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  文献评价指标  
  下载次数:34次 浏览次数:22次