期刊论文详细信息
BMC Genomics
Global transcription of CRISPR loci in the human oral cavity
David T Pride2  Tobias K Boehm3  Mayuri Naidu1  Tasha M Santiago-Rodriguez1  Melissa Ly1  Andrew G Lum1 
[1] Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla 92093-0612, CA, USA;Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla 92093-0612, CA, USA;College of Dental Medicine, Western University of Health Sciences, 309 E Second Street, Pomona 91766, CA, USA
关键词: Virus;    Virome;    Oral microbiome;    Microbiome;    CRISPR;   
Others  :  1203906
DOI  :  10.1186/s12864-015-1615-0
 received in 2014-07-07, accepted in 2015-05-05,  发布年份 2015
PDF
【 摘 要 】

Background

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are active in acquired resistance against bacteriophage and plasmids in a number of environments. In the human mouth, CRISPR loci evolve to counteract oral phage, but the expression of these CRISPR loci has not previously been investigated. We sequenced cDNA from CRISPR loci found in numerous different oral bacteria and compared with oral phage communities to determine whether the transcription of CRISPR loci is specifically targeted towards highly abundant phage present in the oral environment.

Results

We found that of the 529,027 CRISPR spacer groups studied, 88 % could be identified in transcripts, indicating that the vast majority of CRISPR loci in the oral cavity were transcribed. There were no strong associations between CRISPR spacer repertoires and oral health status or nucleic acid type. We also compared CRISPR repertoires with oral bacteriophage communities, and found that there was no significant association between CRISPR transcripts and oral phage, regardless of the CRISPR type being evaluated. We characterized highly expressed CRISPR spacers and found that they were no more likely than other spacers to match oral phage. By reassembling the CRISPR-bearing reads into longer CRISPR loci, we found that the majority of the loci did not have spacers matching viruses found in the oral cavities of the subjects studied. For some CRISPR types, loci containing spacers matching oral phage were significantly more likely to have multiple spacers rather than a single spacer matching oral phage.

Conclusions

These data suggest that the transcription of oral CRISPR loci is relatively ubiquitous and that highly expressed CRISPR spacers do not necessarily target the most abundant oral phage.

【 授权许可】

   
2015 Lum et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523023241588.pdf 2216KB PDF download
Fig. 8. 27KB Image download
Fig. 7. 61KB Image download
Fig. 6. 41KB Image download
Fig. 5. 47KB Image download
Fig. 4. 22KB Image download
Fig. 3. 17KB Image download
Fig. 2. 46KB Image download
Fig. 1. 93KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science. 2008; 320:1047-1050.
  • [2]Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature. 2001; 412:442-445.
  • [3]Schleper C, Holz I, Janekovic D, Murphy J, Zillig W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol. 1995; 177:4417-4426.
  • [4]Prangishvili D, Forterre P, Garrett RA. Viruses of the Archaea: a unifying view. Nat Rev Microbiol. 2006; 4:837-848.
  • [5]Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004; 28:127-181.
  • [6]Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004; 6:1-11.
  • [7]Gomez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science. 2011; 332:106-109.
  • [8]Sobecky PA, Hazen TH. Horizontal gene transfer and mobile genetic elements in marine systems. Methods Mol Biol. 2009; 532:435-453.
  • [9]Jones BV. The human gut mobile metagenome: a metazoan perspective. Gut Microbes. 2010; 1:415-431.
  • [10]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al.. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315:1709-1712.
  • [11]Pride DT, Sun CL, Salzman J, Rao N, Loomer P, Armitage GC et al.. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res. 2011; 21:126-136.
  • [12]Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010; 8:317-327.
  • [13]Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 2013; 41:4360-4377.
  • [14]Sorek R, Kunin V, Hugenholtz P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Micro. 2008; 6:181-186.
  • [15]Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008; 322:1843-1845.
  • [16]Vale PF, Little TJ. CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci. 2010; 277:2097-2103.
  • [17]Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010; 11:181-190.
  • [18]Pothoulakis C, Castagliuolo I, Kelly CP, Lamont JT. Clostridium difficile-associated diarrhea and colitis: pathogenesis and therapy. Int J Antimicrob Agents. 1993; 3:17-32.
  • [19]Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327:167-170.
  • [20]Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P et al.. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010; 468:67-71.
  • [21]Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol. 2014; 12:317-326.
  • [22]Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J et al.. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A. 2013; 110:10771-10776.
  • [23]Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, Pride DT: Human oral viruses are personal, persistent and gender-consistent. ISME J 2014;8:1753–1767.
  • [24]Stern A, Sorek R. The phage-host arms race: shaping the evolution of microbes. Bioessays. 2011; 33:43-51.
  • [25]Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA et al.. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. Isme Journal. 2012; 6:915-926.
  • [26]Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012; 10:607-617.
  • [27]Minot S, Wu GD, Lewis JD, Bushman FD. Conservation of gene cassettes among diverse viruses of the human gut. PLoS One. 2012; 7: Article ID e42342
  • [28]Pride DT, Salzman J, Relman DA. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses. Environmental Microbiology. 2012; 14:2564-2576.
  • [29]Robles-Sikisaka R, Ly M, Boehm T, Naudi M, Salzman J, Pride DT. Association between living environment and human oral viral ecology. ISME J. 2013; 7:1710-1724.
  • [30]Tyson GW, Banfield JF. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol. 2008; 10:200-207.
  • [31]Weinberger AD, Sun CL, Plucinski MM, Denef VJ, Thomas BC, Horvath P et al.. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol. 2012; 8: Article ID e1002475
  • [32]Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P et al.. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008; 190:1390-1400.
  • [33]Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T et al.. Altered oral viral ecology in association with periodontal disease. MBio. 2014; 5:e01133-01114.
  • [34]Naidu M, Robles-Sikisaka R, Abeles SR, Boehm TK, Pride DT. Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol. 2014;14.
  • [35]Robles-Sikisaka R, Naidu M, Ly M, Salzman J, Abeles SR, Boehm TK et al.. Conservation of streptococcal CRISPRs on human skin and saliva. BMC Microbiol. 2014; 14:146. BioMed Central Full Text
  • [36]Gogleva AA, Gelfand MS, Artamonova II. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics. 2014; 15:202. BioMed Central Full Text
  • [37]Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP et al.. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008; 321:960-964.
  • [38]Carte J, Wang R, Li H, Terns RM, Terns MP. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 2008; 22:3489-3496.
  • [39]Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem. 2013; 82:237-266.
  • [40]Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011; 45:273-297.
  • [41]Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol. 2014; 21:528-534.
  • [42]Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013; 10:726-737.
  • [43]Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 2013; 10:841-851.
  • [44]Zhang J, Kasciukovic T, White MF. The CRISPR associated protein Cas4 Is a 5' to 3' DNA exonuclease with an iron-sulfur cluster. PLoS One. 2012; 7: Article ID e47232
  • [45]Arslan Z, Wurm R, Brener O, Ellinger P, Nagel-Steger L, Oesterhelt F et al.. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Res. 2013; 41:6347-6359.
  • [46]Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005; 151:653-663.
  • [47]Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S et al.. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008; 190:1401-1412.
  • [48]Plagens A, Tripp V, Daume M, Sharma K, Klingl A, Hrle A et al.. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Res. 2014; 42:5125-5138.
  • [49]Plagens A, Tjaden B, Hagemann A, Randau L, Hensel R. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol. 2012; 194:2491-2500.
  • [50]Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and Archaea: Versatile small RNAs for adaptive defense and regulation. In: Annual Review Genetics, Vol 45. Volume 45. Bassler BL, Lichten M, Schupbach G, editors. Annual Reviews, Palo Alto; 2011: p.273-297. Annual Review of Genetics]
  • [51]Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010; 64:475-493.
  • [52]Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA et al.. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011; 471:602-607.
  • [53]Hatoum-Aslan A, Maniv I, Marraffini LA. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci U S A. 2011; 108:21218-21222.
  • [54]Goldberg GW, Jiang W, Bikard D, Marraffini LA. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature. 2014; 514:633-637.
  • [55]Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S et al.. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol Microbiol. 2014; 93:98-112.
  • [56]Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M et al.. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PLoS One. 2012; 7: Article ID e38077
  • [57]Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P et al.. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011; 9:467-477.
  • [58]Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol. 2010; 395:270-281.
  • [59]Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M et al.. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011; 475:348-352.
  • [60]Saldanha AJ. Java Treeview–extensible visualization of microarray data. Bioinformatics. 2004; 20:3246-3248.
  • [61]Lee SG, Kim CM, Hwang KS. Development of a software tool for in silico simulation of Escherichia coli using a visual programming environment. J Biotechnol. 2005; 119:87-92.
  文献评价指标  
  下载次数:45次 浏览次数:4次