期刊论文详细信息
BMC Cancer
HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast
Sophie Doublier2  Dimas C Belisario2  Manuela Polimeni2  Laura Annaratone1  Chiara Riganti2  Elena Allia1  Dario Ghigo2  Amalia Bosia2  Anna Sapino1 
[1] Department of Biomedical Sciences and Human Oncology, University of Turin, Turin, Italy
[2] Center of Experimental Research and Medical Sciences, University of Turin, Turin, Italy
关键词: MUC-1;    P-glycoprotein;    Doxorubicin resistance;    Invasive micropapillary breast carcinoma;    3-D spheroids, Elastase;    HIF-1α;   
Others  :  1080602
DOI  :  10.1186/1471-2407-12-4
 received in 2011-04-14, accepted in 2012-01-04,  发布年份 2012
PDF
【 摘 要 】

Background

Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters.

Methods

HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp) expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay.

Results

In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (a widely used HIF-1α inhibitor) or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids.

Conclusions

MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.

【 授权许可】

   
2011 Doublier et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203023403296.pdf 952KB PDF download
Figure 9. 63KB Image download
Figure 8. 151KB Image download
Figure 7. 64KB Image download
Figure 6. 93KB Image download
Figure 5. 77KB Image download
Figure 4. 91KB Image download
Figure 3. 91KB Image download
Figure 2. 71KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Siriaunkgul S, Tavassoli FA: Invasive micropapillary carcinoma of the breast. Mod Pathol 1993, 6:660-662.
  • [2]Luna-Moré S, de los Santos F, Bretón JJ, Cañadas MA: Estrogen and progesterone receptors, c-erbB-2, p53, and Bcl-2 in thirtythree invasive micropapillary breast carcinomas. Pathol Res Pract 1996, 192:27-32.
  • [3]Nassar H, Wallis T, Andea A, Dey J, Adsay V, Visscher D: Clinicopathologic analysis of invasive micropapillary differentiation in breast carcinoma. Mod Pathol 2001, 14:836-841.
  • [4]Zekioglu O, Erhan Y, Ciris M, Bayramoglu H, Ozdemir N: Invasive micropapillary carcinoma of the breast: high incidence of lymph node metastasis with extranodal extension and its immunohistochemical profile compared with invasive ductal carcinoma. Histopathology 2004, 44:18-23.
  • [5]Marchiò C, Iravani M, Natrajan R, Lambros MB, Savage K, Tamber N, Fenwick K, Mackay A, Senetta R, Di Palma S, Schmitt FC, Bussolati G, Ellis LO, Ashworth A, Sapino A, Reis-Filho JS: Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 2008, 215(4):398-410.
  • [6]Pettinato G, Manivel CJ, Panico L, Sparano L, Petrella G: Invasive micropapillary carcinoma of the breast: clinicopathologic study of 62 cases of a poorly recognized variant with highly aggressive behavior. Am J Clin Pathol 2004, 121:857-866.
  • [7]Alvarado-Cabrero I, Alderete-Vasquez G, Quintal-Ramirez M, Patino M, Ruiz E: Incidence of pathologic complete response in women treated with preoperative chemotherapy for locally advanced breast cancer: correlation of histology, hormone receptor status, Her2/Neu, and gross pathologic findings. Ann Diagn Pathol 2009, 13:151-157.
  • [8]Ozben T: Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 2006, 580:2903-2909.
  • [9]Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002, 2:48-58.
  • [10]Sarkadi B, Homolya L, Szakacs G, Varadi A: Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006, 86:1179-1236.
  • [11]Tiwari AK, Sodani K, Dai CL, Ashby CR Jr, Chen ZS: Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 2011, 12:570-594.
  • [12]Teicher BA: Hypoxia and drug resistance. Cancer Metastasis Rev 1994, 13:139-168.
  • [13]Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci 1995, 92:5510-5514.
  • [14]Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3:721-732.
  • [15]Shaw RJ: Glucose metabolism and cancer. Curr Opin Cell Biol 2006, 18:598-608.
  • [16]Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP: Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002, 62(12):3387-3394.
  • [17]Li J, Shi M, Cao Y, Yuan W, Pang T, Li B, Sun Z, Chen L, Zhao RC: Knockdown of hypoxia-inducible factor-1alpha in breast carcinoma MCF7 cells results in reduced tumor growth and increased sensitivity to methotrexate. Biochem Biophys Res Commun 2006, 342(4):1341-1351.
  • [18]Song X, Liu X, Chi W, Liu Y, Wei L, Wang X, Yu J: Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 2006, 58(6):776-784.
  • [19]Riganti C, Doublier S, Aldieri E, Orecchia S, Betta PG, Gazzano E, Ghigo D, Bosia A: Asbestos induces doxorubicin resistance in MM98 mesothelioma cells via HIF-1alpha. Eur Respir J 2008, 32(2):443-451.
  • [20]Riganti C, Doublier S, Viarisio D, Miraglia E, Pescarmona G, Ghigo D, Bosia A: Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br J Pharmacol 2009, 156(7):1054-1066.
  • [21]Yui S, Tomita K, Kudo T, Ando S, Yamazaki M: Induction of multicellular 3-D spheroids of MCF7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Sci 2005, 96:560-570.
  • [22]Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156-159.
  • [23]Jacob TA, Striker GE, Stetler-Stevenson M, Striker LJ: Mesangial cells from transgenic mice with progressive glomerulosclerosis exhibit stable phenotype changes including undetectable MMP-9 and increased type IV collagen. Lab Invest 1996, 75(6):791-799.
  • [24]Lofstedt T, Jögi A, Sigvardsson M, Gradin K, Poellinger L, Påhlman S, Axelson H: Induction of ID2 expression by hypoxia-inducible factor-1. J Biol Chem 2004, 279(38):39223-39231.
  • [25]Nagano T, Ishii G, Nagai K, Ito T, Kawase A, Takahashi K, Nishimura Y, Nishiwaki Y, Ochiai A: Structural and biological properties of a papillary component generating a micropapillary component in lung adenocarcinoma. Lung Cancer 2010, 67(3):282-289.
  • [26]Eom DW, Kang GH, Han SH, Cheon GJ, Han KH, Oh HS, Kim JH, Jang HJ, Hong SM: Gastric micropapillary carcinoma: A distinct subtype with a significantly worse prognosis in TNM stages I and II. Am J Surg Pathol 2011, 35(1):84-91.
  • [27]Hamilton G: Multicellular spheroids as an in vitro tumor model. Cancer Lett 1998, 131(1):29-34.
  • [28]Braun RD, Beatty AL: Modeling of oxygen transport across tumor multicellular layers. Microvasc Res 2007, 73(2):113-123.
  • [29]Sun H-L, Liu Y-N, Huang Y-T, Pan S-L, Huang D-Y, Guh J-H, Lee F-Y, Kuo S-C, Teng C-M: YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kB signaling to HIF-1α accumulation during hypoxia. Oncogene 2007, 26:3941-3951.
  • [30]Cornwell MM, Safa AR, Felsted RL, Gottesman MM, Pastan I: Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150- to 170-kDa protein detected by photoaffinity labeling. Proc Natl Acad Sci USA 1986, 83(11):3847-3850.
  • [31]Lee S, Baek M, Kim H-Y, Ha J-H, Jeoung D-I: Mechanism of doxorubicin-induced cell death and expression profile analysis. Biotechnology Letters 2002, 24:1147-1151.
  • [32]Schroeder JA, Masri AA, Adriance MC, Tessier JC, Kotlarczyk KL, Thompson MC, Gendler SJ: MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene 2004, 23:5739-5747.
  • [33]Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R, Grignon D, Sarkar F, Cheng J, Adsay V: Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol 2004, 17(9):1045-1050.
  • [34]Li YS, Kaneko M, Sakamoto DG, Takeshima Y, Inai K: The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer 2006, 13(1):58-63.
  • [35]Bonaddona G: Evolving concepts in the systemic adjuvant treatment of breast cancer. Cancer Res 1992, 52:2127-2137.
  • [36]Cleator S, Parton M, Dowsett M: The biology of neoadjuvant chemotherapy for breast cancer. Endocr Relat Cancer 2002, 9:183-195.
  • [37]Pusztai L: Preoperative systemic chemotherapy and pathologic assessment of response. Pathol Oncol Res 2008, 14:169-171.
  • [38]Ruei-Zhen L, Hwan-You C: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008, 3:1172-1184.
  • [39]Fardel O, Lecureur V, Guillouzo A: The P-glycoprotein multidrug transporter. Gen Pharmacol 1996, 27:1283-1291.
  • [40]Sullivan R, Paré GC, Frederiksen LJ, Semenza GL, Graham CH: Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 2008, 7(7):1961-1973.
  • [41]Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 1999, 59:3761-376.
  • [42]Hung CC, Liou HH: YC-1, a novel potential anticancer agent, inhibit multidrug-resistant protein via cGMP-dependent pathway. Invest New Drugs 2011, 29(6):1337-1346.
  • [43]Matthews N, Adams MA, Maxwell LR, Gofton TE, Graham CH: Nitric Oxide-Mediated Regulation of Chemosensitivity in Cancer Cells. J Natl Cancer Inst 2001, 93:1879-1885.
  • [44]Muir CP, Adams MA, Graham CH: Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells. Breast Cancer Res Treat 2006, 96:169-176.
  • [45]Frederiksen LJ, Sullivan R, Maxwell LR, Macdonald-Goodfellow SK, Adam s MA, Bennett BM, Siemens , Graham CH: Chemosensitization of Cancer In vitro and In vivo by Nitric Oxide Signaling. Cancer Res 2007, 13:2199-2206.
  • [46]Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A: Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 2005, 65(2):516-525.
  • [47]Munic V, Hlevnjak M, Erakovic' Haber V: Characterization of rhodamine-123, calcein and 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF) export via MRP2 (ABCC2) in MES-SA and A549 cells. Eur J Pharml Sci 2011, 43:359-369.
  • [48]Thomas H, Coley HM: Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting P-Glycoprotein. Cancer Control 2003, 10(2):159-165.
  • [49]Petersen JL: Breast carcinomas with an unexpected inside out growth pattern: rotation of polarization associated with angioinvasion [abstract]. Pathol Res Pract 1993, 189:780.
  • [50]Luna-Moré S, Gonzalez B, Acedo C, Rodrigo I, Luna C: Invasive micropapillary carcinoma of the breast. A new special type of invasive mammary carcinoma. Pathol Res Pract 1994, 190:668-674.
  • [51]Rahn JJ, Dabbagh L, Pasdar M, Hugh JC: The importance of MUC1 cellular localization in patients with breast carcinoma:an immunohistologic study of 71 patients and review of the literature. Cancer 2001, 91:1973-1982.
  • [52]Bos R, van Diest PJ, van der Groep P, Shvarts A, Greijer AE, van der Wall E: Expression of hypoxia-inducible factor-1alpha and cell cycle proteins in invasive breast cancer are estrogen receptor related. Breast Cancer Res 2004, 6:R450-R459. BioMed Central Full Text
  • [53]Kimbro KS, Simons JW: Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 2006, 13:739-749.
  文献评价指标  
  下载次数:174次 浏览次数:35次