期刊论文详细信息
BMC Immunology
Effect of anti-gliadin IgY antibody on epithelial intestinal integrity and inflammatory response induced by gliadin
Hoon H. Sunwoo1  Ju Won Suh2  Naiyana Gujral1 
[1] 3142G Katz Group Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361 – 87 Ave, Edmonton T6G 2E1, AB, Canada;Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin 449-728, Gyeonggi-Do, Korea
关键词: Cytokines;    Intestinal integrity;    Immunoglobulin Y;    Gliadin;    Celiac disease;   
Others  :  1220005
DOI  :  10.1186/s12865-015-0104-1
 received in 2014-11-19, accepted in 2015-06-24,  发布年份 2015
PDF
【 摘 要 】

Background

Pepsin-trypsin resistant gliadin (PT-gliadin) promotes intestinal tissue inflammation and increases paracellular permeability of immunogenic gliadin peptides into the lamina propria. This leads to the complications seen in the pathogenesis of celiac disease (CD). In this study, specific anti-gliadin IgY antibody was produced and evaluated for its efficacy on gliadin induced intestinal integrity impairment and proinflammatory effects on intestinal epithelial (Caco-2) cell culture model for CD.

Methods

Caco-2 (passages 20-24) monolayers were subjected to 7 experimental conditions (n=3 each): phosphatebufferedsaline (PBS; control), pancreatic digested-casein (PD-casein; negative control), PT-gliadin (positive control), non-specific IgY with PT-gliadin, and anti-wheat gliadin IgY with PT-gliadin at a ratio of 1:6,000, 1:3,000 and 1:1,500. Caco-2 monolayers were then evaluated for effects of gliadin and/or anti-wheat gliadin IgY after 24 h exposure. Enzyme-linked immunosorbent assay (ELISA) was used to quantify anti-inflammatory markers (TNF-α and IL-1β) 5 days after cells were exposed to PT-gliadin and/or anti-wheat gliadin IgY.

Results

Among other conditions, anti-wheat gliadin IgY at a ratio of 1:3,000 (anti-gliadin IgY: PT-gliadin) significantlyprevented gliadin toxicity on Caco-2 by maintaining intestinal integrity, inhibiting phenol red permeation, and inhibiting gliadin absorption and production of proinflammatory cytokines (TNF-α and IL-1β) as compared to PT-gliadin stimulated cultures (P < 0.05).

Conclusion

The anti-wheat gliadin IgY antibody produced in this study has proved to inhibit absorption of gliadin and gliadin-induced inflammatory response in Caco2 cell culture model of CD. Anti-gliadin IgY, therefore has potential to be used as an oral passive antibody therapy to treat CD.

【 授权许可】

   
2015 Gujral et al.

【 预 览 】
附件列表
Files Size Format View
20150721021832840.pdf 908KB PDF download
Fig. 5. 19KB Image download
Fig. 4. 26KB Image download
Fig. 3. 46KB Image download
Fig. 2. 14KB Image download
Fig. 1. 21KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, Murray L, Metzger MH, Gasparin M, Bravi E, Mäki M. The prevalence of CD in Europe: results of a centralized, international mass screening project. Ann Med. 2010; 42:587-595.
  • [2]Marsh MN. Gluten, major histocompatibility complex, and the small intestine: A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterol. 1992; 102:330-354.
  • [3]Di Sabatino A, Corazza GR. Coeliac disease. Lancet. 2009; 373:1480-1493.
  • [4]Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, Picard J, Osman M, Quaratino S, Londei M. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 2003; 362:30-37.
  • [5]Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem. 2010; 109:801-807.
  • [6]Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, Ribecco MT, Lania G, Zanzi D, Santagata S, Auricchio R, Troncone R, Auricchio S. Gliadin peptide P31-43 localizes to endocytic vesicles and interferes with their maturation. PLoS One. 2010; 5:12246.
  • [7]Zimmer KP, Fischer I, Mothes T, Weissen-Plenz G, Schmitz M, Wieser H, Buning J, Lerch MM, Ciclitira PC, Weber P, Naim HY. Endocytotic segregation of gliadin peptide 31–49 in enterocytes. Gut. 2010; 59:300-310.
  • [8]Molberg Ã, McAdam SN, Körner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Norén O, Roepstorff P, Lundin KEA, Sjöström H, Sollid LM. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nature Med. 1998; 4:713-717.
  • [9]Harris KM, Fasano A, Mann DL. Cutting edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease. J Immunol. 2008; 181:4457-60.
  • [10]Tye-Din JA, Anderson RP, Ffrench RA, Brown GJ, Hodsman P, Siegel M, Botwick W, Shreeniwas R. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol. 2010; 134:289-295.
  • [11]Pinier M, Verdu EF, Nasser-Eddine M, David CS, Vézina A, Rivard N, Leroux JC. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterol. 2009; 136:288-98.
  • [12]Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, Not T, Zampini L, Catassi C, Fasano A. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006; 41:408-419.
  • [13]Pardin C, Roy I, Lubell WD, Keillor JW. Reversible and competitive cinnamoyl triazole inhibitors of tissue transglutaminase. Chem Biol Drug Design. 2008; 72:189-196.
  • [14]Anderson RP, Van Heel DA, Tye-Din JA, Keillor JW. Antagonists and non-toxic variants of the dominant wheat gliadin T cell epitope in coeliac disease. Gut. 2006; 55:485-491.
  • [15]Hüe S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004; 21:367-377.
  • [16]Gujral N, Löbenberg R, Suresh M, Sunwoo HH. In-vitro and in-vivo binding activity of chicken egg yolk immunoglobulin Y (IgY) against gliadin in food matrix. J Agri Food Chem. 2012; 60:3166-3172.
  • [17]Reilly RM, Domingo R, Sandhu J. Oral delivery of antibodies. Future pharmacokinetic trends. Clin Pharmacokinetics. 1997; 32:313-323.
  • [18]Sarker SA, Casswall TH, Juneja LR, Hoq E, Hossain I, Fuchs GJ, Hammarström L. Randomized, placebo-controlled, clinical trial of hyperimmunized chicken egg yolk immunoglobulin in children with rotavirus diarrhea. J Pediatr Gastroenterol Nutrition. 2001; 32:19-25.
  • [19]Sunwoo HH, Lee EN, Menninen K, Suresh MR, Sim JS. Growth inhibitory effect of chicken egg yolk antibody (IgY) on Escherichia coli O157:H7. J Food Sci. 2002; 67:1486-1494.
  • [20]Lee EN, Sunwoo HH, Menninen K, Sim JS. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium. Poultry Sci. 2002; 81:632-641.
  • [21]Song MS, Kim CJ, Cho WI, Sunwoo HH. Growth inhibition of clostridium perfringens vegetative cells and spores using chicken immunoglobulin Y. J Food Safety. 2009; 29:511-520.
  • [22]Lindfors K, Rauhavirta T, Stenman S, Mäki M, Kaukinen K. In vitro models for gluten toxicity: relevance for celiac disease pathogenesis and development of novel treatment options. Experim Biol Med. 2012; 237:119-25.
  • [23]Giovannini C, Sanchez M, Straface E, Scazzocchio B, Silano M, De Vincenzi M. Induction of apoptosis in Caco-2 cells by wheat gliadin peptides. Toxicol. 2000; 145:63-71.
  • [24]Giovannini C, Matarrese P, Scazzocchio B, Varí R, D’Archivio M, Straface E, Masella R, Malorni W, De Vincenzi M. Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Letters. 2003; 540:117-124.
  • [25]Stenman SM, Venäläinen JI, Lindfors K, Auriola S, Mauriala T, Kaukovirta-Norja A, Jantunen A, Laurila K, Qiao SW, Sollid LM, Männisto PT, Kaukinen K, Mäki M. Enzymatic detoxification of gluten by germinating wheat proteases: Implications for new treatment of celiac disease. Ann Med. 2009; 41:390-400.
  • [26]Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C. Structural basis for gluten intolerance in celiac sprue. Science. 2002; 297:2275-2279.
  • [27]Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J of Phys - Gastrointestinal Liver Phys. 2002; 283:996-1003.
  • [28]Menard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 2010; 3:247-259.
  • [29]Sunwoo HH, Lee EN, Gujral N, Suresh MR. Growth inhibition of Escherichia coli 987P by neutralizing IgY antibodies. Open Immunol J. 2010; 3:1-8.
  • [30]Gujral N, Loebenberg R, Suresh M, Sunwoo HH. In-vitro and in-vivo binding activity of chicken egg yolk immunoglobulin Y (IgY) against gliadin in food matrix. J Agricul Food Chem. 2012; 60:3166-3172.
  • [31]Gujral N, Suresh MR, Sunwoo HH. Quantitative double antibody sandwich ELISA for the determination of gliadin. J Immunoassay Immunochem. 2012; 33:339-351.
  • [32]Hatta H, Tsuda K, Akachi S, Kim M, Yamamoto T. Productivity and some properties of egg yolk antibody (IgY) against human rotavirus compared with rabbit IgG. Biosci Biotechnol Biochem. 1993; 57:450-454.
  • [33]Sim JS, Sunwoo HH, Lee EN, Ovoglobulin Y. Natural food antimicrobial systems. Naidu AS, editor. CRC Press, New York; 2000: p.227-252.
  • [34]Fina D, Sarra M, Caruso R, Del Vecchio BG, Pallone F, MacDonald TT, Monteleone G. Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut. 2008; 57:887-892.
  • [35]Carroccio A, Iacono G, D’Amico D, Cavataio F, Teresi S, Caruso C, Di PL, Colombo A, D’Arpa F, Florena A, Notarbartolo A, Montalto G. Production of anti-endomysial antibodies in cultured duodenal mucosa: Usefulness in coeliac disease diagnosis. Scand J Gastroenterol. 2002; 37:32-38.
  • [36]Vogelsang H, Schwarzenhofer M, Granditsch G, Oberhuber G. In vitro production of endomysial antibodies in cultured duodenal mucosa from patients with celiac disease. Am J Gastroenterol. 1999; 94:1057-1061.
  • [37]Henderson B, Wilson M, McNab R, Lax AJ. The innate immune response. In: Cell Microbio. Wiley, Chichester; 1999: p.311-353.
  • [38]Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature Rev Gastroenterol Hepatol. 2000; 406:782-787.
  • [39]Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol. 2000; 164:966-972.
  • [40]Lübbing N, Barone MV, Rudloff S, Troncone R, Auricchio S, Zimmer KP. Correction of gliadin transport within enterocytes through celiac disease serum. Pediatr Res. 2011; 70:357-62.
  • [41]Li N, DeMarco VG, West CM, Neu J. Glutamine supports recovery from loss of transepithelial resistance and increase of permeability induced by media change in Caco-2 cells. J Nutri Biochem. 2003; 14:401-408.
  • [42]Chiara M, DeStefano D, Mele G, Fecarotta S, Greco L, Troncone R. Nuclear factor kB is activated in small intestinal mucosa of celiac patients. J Mol Med. 2003; 81:373-379.
  • [43]Nilsen EM, Jahnsen FL, Lundin KE, Johansen FE, Fausa O, Sollid LM, Jahnsen J, Scott H. Per Brandtzaeg Gluten induces an intestinal cytokine response strongly dominated by interferon γ in patients with celiac disease. Gastroenterol. 1998; 115:551-563.
  • [44]Beckett CG, Dell’Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ. Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Europ J Gastroenterol Hepatol. 1999; 11:529-535.
  • [45]Jelínková L, Tucková L, Cinová J, Flegelová Z, Tlaskalová-Hogenová H. Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Letters. 2004; 571:81-85.
  • [46]Helms S. Celiac disease and gluten-associated diseases. Alt Med Rev. 2005; 10:172-192.
  • [47]Hoffman RA. Intraepithelial lymphocytes coinduce nitric oxide synthase in intestinal epithelial cells. Am J of Phys - Gastrointestinal Liver Phys. 2000; 278:G886-G894.
  • [48]Natoli M, Leoni BD, D’Agnano I, Zucco F, Felsani A. Good Caco-2 cell culture practices. Toxicol In Vitro. 2012; 26:1243-46.
  • [49]Ferruzza S, Scarino ML, Gambling L, Natella F, Sambuy Y. Biphasic effect of iron on human intestinal Caco-2 cells: early effect on tight junction permeability with delayed onset of oxidative cytotoxic damage. Cell Mol Biol. 2003; 49:89-99.
  文献评价指标  
  下载次数:38次 浏览次数:14次