期刊论文详细信息
BMC Microbiology
In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine
R. Burgkart2  M. Schieker3  A. Stemberger2  K.-D. Kühn4  S. Wehner2  P. Föhr2  J. Schneider1  A. Obermeier2 
[1] Klinikum rechts der Isar, Technische Universität München, Institut für Mikrobiologie, Immunologie und Hygiene, Trogerstr. 30, Munich, 81675, Germany;Klinikum rechts der Isar, Technische Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, Munich, 81675, Germany;Klinikum der Universität München, Klinik für Chirurgie, Experimentelle Chirurgie und Regenerative Medizin, Nußbaumstr. 20, Munich, 80336, Germany;Universitätsklinik für Orthopädie und Orthopädische Chirurgie, Medizinische Universität, Auenbruggerplatz 5, Graz, 8036, Austria
关键词: In vitro;    Biocompatibility;    Surgical site infection;    Staphylococcus aureus;    Fatty acid;    Slow-release;    Octenidine;    Coating;    Antimicrobial;    Surgical sutures;   
Others  :  1227548
DOI  :  10.1186/s12866-015-0523-4
 received in 2015-05-09, accepted in 2015-09-18,  发布年份 2015
PDF
【 摘 要 】

Background

Sutures colonized by bacteria represent a challenge in surgery due to their potential to cause surgical site infections. In order to reduce these type of infections antimicrobially coated surgical sutures are currently under development. In this study, we investigated the antimicrobial drug octenidine as a coating agent for surgical sutures. To achieve high antimicrobial efficacy and required biocompatibility for medical devices, we focused on optimizing octenidine coatings based on fatty acids. For this purpose, antimicrobial sutures were prepared with either octenidine-laurate or octenidine-palmitate at 11, 22, and 33 μg/cm drug concentration normalized per length of sutures. Octenidine containing sutures were compared to the commercial triclosan-coated suture Vicryl® Plus. The release of octenidine into aqueous solution was analyzed and long-term antimicrobial efficacy was assessed via agar diffusion tests using Staphylococcus aureus. For determining biocompatibility, cytotoxicity assays (WST-1) were performed using L-929 mouse fibroblasts.

Results

In a 7 days elution experiment, octenidine-palmitate coated sutures demonstrated much slower drug release (11 μg/cm: 7 %; 22 μg/cm: 5 %; 33 μg/cm: 33 %) than octenidine-laurate sutures (11 μg/cm: 82 %; 22 μg/cm: 88 %; 33 μg/cm: 87 %). Furthermore sutures at 11 μg/cm drug content were associated with acceptable cytotoxicity according to ISO 10993–5 standard and showed, similar to Vicryl® Plus, relevant efficacy to inhibit surrounding bacterial growth for up to 9 days.

Conclusions

Octenidine coated sutures with a concentration of 11 μg/cm revealed high antimicrobial efficacy and biocompatibility. Due to their delayed release, palmitate carriers should be preferred. Such coatings are candidates for clinical testing in regard to their safety and efficacy.

【 授权许可】

   
2015 Obermeier et al.

【 预 览 】
附件列表
Files Size Format View
20150929020130294.pdf 901KB PDF download
Fig. 4. 33KB Image download
Fig. 3. 12KB Image download
Fig. 2. 22KB Image download
Fig. 1. 19KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Hranjec T, Swenson BR, Sawyer RG. Surgical site infection prevention: how we do it. Surg Infect. 2010; 11(3):289-94.
  • [2]Leaper DJ. Surgical-site infection. Br J Surg. 2010; 97(11):1601-2.
  • [3]Baracs J, Huszar O, Sajjadi SG, Horvath OP. Surgical site infections after abdominal closure in colorectal surgery using triclosan-coated absorbable suture (PDS Plus) vs. uncoated sutures (PDS II): a randomized multicenter study. Surg Infect. 2011; 12(6):483-9.
  • [4]Leaper D, McBain AJ, Kramer A, Assadian O, Sanchez JL, Lumio J et al.. Healthcare associated infection: novel strategies and antimicrobial implants to prevent surgical site infection. Ann R Coll Surg Engl. 2010; 92(6):453-8.
  • [5]Young B, Ng TM, Teng C, Ang B, Tai HY, Lye DC. Nonconcordance with surgical site infection prevention guidelines and rates of surgical site infections for general surgical, neurological, and orthopedic procedures. Antimicrob Agents Chemother. 2011; 55(10):4659-63.
  • [6]Owens CD, Stoessel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect. 2008; 70 Suppl 2:3-10.
  • [7]Katz S, Izhar M, Mirelman D. Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Ann Surg. 1981; 194(1):35-41.
  • [8]Mingmalairak C. Antimicrobial Sutures: New Strategy in Surgical Site Infections. In: Science against Microbial Pathogens: Communicating Current Research and Technological Advances: Formatex Research Center. 2011.313-23.
  • [9]Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD et al.. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006; 203(4):481-9.
  • [10]Ming X, Rothenburger S, Nichols MM. In vivo and in vitro antibacterial efficacy of PDS plus (polidioxanone with triclosan) suture. Surg Infect. 2008;9(4):451–7.
  • [11]Ming X, Rothenburger S, Yang D. In vivo antibacterial efficacy of MONOCRYL plus antibacterial suture (Poliglecaprone 25 with triclosan). Surg Infect. 2007;8(2):201–8.
  • [12]Chang WK, Srinivasa S, Morton R, Hill AG. Triclosan-impregnated sutures to decrease surgical site infections: systematic review and meta-analysis of randomized trials. Ann Surg. 2012; 255(5):854-9.
  • [13]Williams N, Sweetland H, Goyal S, Ivins N, Leaper DJ. Randomized trial of antimicrobial-coated sutures to prevent surgical site infection after breast cancer surgery. Surg Infect. 2011; 12(6):469-74.
  • [14]Mingmalairak C, Ungbhakorn P, Paocharoen V. Efficacy of antimicrobial coating suture coated polyglactin 910 with tricosan (Vicryl plus) compared with polyglactin 910 (Vicryl) in reduced surgical site infection of appendicitis, double blind randomized control trial, preliminary safety report. J Med Assoc Thai. 2009; 92(6):770-5.
  • [15]Fleck T, Moidl R, Blacky A, Fleck M, Wolner E, Grabenwoger M, et al. Triclosan-Coated Sutures for the Reduction of Sternal Wound Infections: Economic Considerations. The Annals of thoracic surgery. 2007;84(1):232-6.
  • [16]Justinger C, Moussavian MR, Schlueter C, Kopp B, Kollmar O, Schilling MK. Antibacterial [corrected] coating of abdominal closure sutures and wound infection. Surgery. 2009; 145(3):330-4.
  • [17]Justinger C, Slotta JE, Ningel S, Gräber S, Kollmar O, Schilling MK. Surgical-site infection after abdominal wall closure with triclosan-impregnated polydioxanone sutures: Results of a randomized clinical pathway facilitated trial (NCT00998907). Surgery. 2013; 154(3):589-95.
  • [18]Stone J, Gruber TJ, Rozzelle CJ. Healthcare savings associated with reduced infection rates using antimicrobial suture wound closure for cerebrospinal fluid shunt procedures. Pediatr Neurosurg. 2010; 46(1):19-24.
  • [19]Wang ZX, Jiang CP, Cao Y, Ding YT. Systematic review and meta-analysis of triclosan-coated sutures for the prevention of surgical-site infection. Br J Surg. 2013; 100(4):465-73.
  • [20]Yazdankhah SP, Scheie AA, Hoiby EA, Lunestad BT, Heir E, Fotland TO et al.. Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist. 2006; 12(2):83-90.
  • [21]Copitch JL, Whitehead RN, Webber MA. Prevalence of decreased susceptibility to triclosan in Salmonella enterica isolates from animals and humans and association with multiple drug resistance. Int J Antimicrob Agents. 2010; 36(3):247-51.
  • [22]Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ Health Perspect. 2008; 116(3):303-7.
  • [23]Fourth Report on Human Exposure to Environmental Chemicals. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA; 2009.
  • [24]Matl FD, Zlotnyk J, Obermeier A, Friess W, Vogt S, Büchner H et al.. New Anti-infective Coatings of Surgical Sutures Based on a Combination of Antiseptics and Fatty Acids. J Biomater Sci Polym Ed. 2009; 20(10):1439-49.
  • [25]Obermeier A, Schneider J, Wehner S, Matl FD, Schieker M, von Eisenhart-Rothe R et al.. Novel High Efficient Coatings for Anti-Microbial Surgical Sutures Using Chlorhexidine in Fatty Acid Slow-Release Carrier Systems. PLoS One. 2014; 9(7):e101426.
  • [26]Hubner NO, Siebert J, Kramer A. Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin Pharmacol Physiol. 2010; 23(5):244-58.
  • [27]Greener M. Octenidine: antimicrobial activity and clinical efficacy. Wounds UK. 2011; 7(3):74-78.
  • [28]Ethicon. Ihr zusätzlicher Schutz vor postoperativen Wundinfektionen, PLUS Nahtmaterial – ein neues Maß an Sicherheit (Brochure nr. 178). In: GmbH JJM, editor. Sutures Plus Antibacterial suture Norderstedt, Germany: Ethicon GmbH a Company of Johnson & Johnson; 2010.
  • [29]Leaper D, Assadian O, Hubner N-O, McBain A, Barbolt T, Rothenburger S et al.. Antimicrobial sutures and prevention of surgical site infection: assessment of the safety of the antiseptic triclosan. Int Wound J. 2011; 8(6):556-66.
  • [30]Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982; 146(4):487-97.
  • [31]Amalaradjou M, Venkitanarayanan K. Antibiofilm effect of Octenidine Hydrochloride on Staphylococcus aureus, MRSA and VRSA. Pathogens. 2014; 3(2):404.
  文献评价指标  
  下载次数:295次 浏览次数:54次