期刊论文详细信息
BMC Musculoskeletal Disorders
Modification of elastic stable intramedullary nailing with a 3rd nail in a femoral spiral fracture model – results of biomechanical testing and a prospective clinical study
Marion Rapp2  Rebecca Eggert1  Nina Gros1  Maaike Schulze-Hessing1  Gregor Zachert3  Christine Stratmann1  Martin M Kaiser1 
[1] Department of Pediatric Surgery, University Medical Centre Schleswig-Holstein, Campus Luebeck, Ratezburger Allee 160, 23538 Lübeck, Germany;Department of Paediatric Surgery, Hospital of Kassel, Mönchebergstr. 41-43, 34125 Kassel, Germany;Department of Biomechatronics and Academic Orthopedics, University of Luebeck, Ratezburger Allee 160, 23538 Lübeck, Germany
关键词: Adolescents;    Children;    Treatment;    Femur;    Fracture;    Biomechanical testing;    Elastic stable intramedullary nailing;   
Others  :  1128956
DOI  :  10.1186/1471-2474-15-3
 received in 2012-11-22, accepted in 2013-12-31,  发布年份 2014
PDF
【 摘 要 】

Background

Elastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children. However, high complication rates (10-50%) are reported in complex fractures. This biomechanical study compares the stiffness with a 3rd nail implanted to that in the classical 2C-shaped configuration and presents the application into clinical practice.

Methods

For each of the 3 configurations of ESIN-osteosynthesis with titanium nails eight composite femoral grafts (Sawbones®) with an identical spiral fracture were used: 2C configuration (2C-shaped nails, 2 × 3.5 mm), 3CM configuration (3rd nail from medial) and 3CL configuration (3rd nail from lateral). Each group underwent biomechanical testing in 4-point bending, internal/external rotation and axial compression.

Results

2C and 3CM configurations showed no significant differences in this spiroid type fracture model. 3CL had a significantly higher stiffness during anterior-posterior bending, internal rotation and 9° compression than 2C, and was stiffer in the lateral-medial direction than 3CM. The 3CL was less stable during p-a bending and external rotation than both the others. As biomechanical testing showed a higher stability for the 3CL configuration in two (a-p corresponding to recurvation and 9° compression to shortening) of three directions associated with the most important clinical problems, we added a 3rd nail in ESIN-osteosynthesis for femoral fractures. 11 boys and 6 girls (2.5-15 years) were treated with modified ESIN of whom 12 were ‘3CL’; due to the individual character of the fractures 4 patients were treated with ‘3CM’ (third nail from medial) and as an exception 1 adolescent with 4 nails and one boy with plate osteosynthesis. No additional stabilizations or re-operations were necessary. All patients achieved full points in the Harris-Score at follow-up; no limb length discrepancy occurred.

Conclusion

The 3CL configuration provided a significantly higher stiffness than 2C and 3CM configurations in this biomechanical model. These results were successfully transmitted into clinical practice. All children, treated by 3CL or 3CM according to the individual character of each fracture, needed no additional stabilization and had no Re-Do operations. As a consequence, at our hospital all children with femoral diaphyseal fractures with open physis are treated with this modified ESIN-technique.

【 授权许可】

   
2014 Kaiser et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150225151328451.pdf 2342KB PDF download
Figure 6. 75KB Image download
Figure 5. 74KB Image download
Figure 4. 62KB Image download
Figure 3. 91KB Image download
Figure 2. 119KB Image download
Figure 1. 129KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Leitlinien AF: Deutsche Gesellschaft für Kinderchirurgie. 2008. http://www.awmf.org/leitlinien/detail/ll/006-016.html webcite
  • [2]Beaty JH, Austin SM, Warner WC, Canale ST, Nichols L: Interlocking intramedullary nailing of femoral-shaft fractures in adolescents: preliminary results and complications. J Pediatr Orthop 1994, 14(2):178-183.
  • [3]Dietz HG, Joppich I, Marzi I, Parsch K, Schlickewei W, Schmittenbecher PP: [Treatment of femoral fractures in childhood. Consensus report of the 19th meeting of the child traumatology section of the DGU, Munich, 23–24 June 2000]. Unfallchirurg 2001, 104(8):788-790.
  • [4]Dietz HG, Schmittenbecher PP, Illing P: Intramedulläre Osteosynthese im Wachstumsalter. München Wien Baltimore: Urban + Schwarzenberg; 1997.
  • [5]Metaizeau JP: Stable elastic intramedullary nailing for fractures of the femur in children. J Bone Joint Surg Br 2004, 86(7):954-957.
  • [6]Frank DA, Gallo RA, Altman GT, Altman DT: Osteonecrosis of the femoral head after retrograde intramedullary nailing of a femoral shaft fracture in an adolescent. A case report. J Bone Joint Surg 2005, 87(9):2080-2085.
  • [7]Gordon JE, Swenning TA, Burd TA, Szymanski DA, Schoenecker PL: Proximal femoral radiographic changes after lateral transtrochanteric intramedullary nail placement in children. J Bone Joint Surg 2003, 85-A(7):1295-1301.
  • [8]Beaty JH, Kasser JR: Rockwood and Wilkins’Fractures in Children. 6th Edition. Philadelphia: Lippincott Williams & Wilkins Philadelphia; 2006.
  • [9]Anastasopoulos J, Petratos D, Konstantoulakis C, Plakogiannis C, Matsinos G: Flexible intramedullary nailing in paediatric femoral shaft fractures. Injury 2010, 41:578-582.
  • [10]Maier M, Marzi I: Elastic stable intramedullary nailing of femur fractures in children. Oper Orthop Traumatol 2008, 20(4-5):364-72.
  • [11]Synthes: The titanium elastic nail system TECHNIQUE GUIDE. 1998. http://www.rcsed.ac.uk/fellows/lvanrensburg/classification/surgtech/ao/manuals/Synthes%20TENS%20nails.pdf webcite
  • [12]Rapp M, Albers K, Kaiser MM: Korrektureingriffe nach Operationen bei Femurschaftfrakturen im Kindesalter. Chirurgische Praxis 2011, 73/3:499-512.
  • [13]Luhmann SJ, Schootman M, Schoenecker PL, Dobbs MB, Gordon JE: Complications of titanium elastic nails for pediatric femoral shaft fractures. J Pediatr Orthop 2003, 23(4):443-447.
  • [14]Narayanan UG, Hyman JE, Wainwright AM, Rang M, Alman BA: Complications of elastic stable intramedullary nail fixation of pediatric femoral fractures, and how to avoid them. J Pediatr Orthop 2004, 24(4):363-369.
  • [15]Slongo TF: Complications and failures of the ESIN technique. Injury 2005, 36(Suppl 1):A78-A85.
  • [16]Wall EJ, Jain V, Vora V, Mehlman CT, Crawford AH: Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures. J Bone Joint Surg 2008, 90(6):1305-1313.
  • [17]Flynn JM, Hresko T, Reynolds RA, Blasier RD, Davidson R, Kasser J: Titanium elastic nails for pediatric femur fractures: a multicenter study of early results with analysis of complications. J Pediatr Orthop 2001, 21(1):4-8.
  • [18]Kuremsky MA, Frick SL: Advances in the surgical management of pediatric femoral shaft fractures. Curr Opin Pediatr 2007, 19(1):51-57.
  • [19]Sink EL, Hedequist D, Morgan SJ, Hresko T: Results and technique of unstable pediatric femoral fractures treated with submuscular bridge plating. J Pediatr Orthop 2006, 26(2):177-181.
  • [20]von Laer L, Kraus R, Linhardt W: Frakturen und Luxationen im Wachstumsalter. New York: G Thieme Verlag Stuttgart; 2007.
  • [21]Volpon JB, Perina MM, Okubo R, Maranho DA: Biomechanical performance of flexible intramedullary nails with end caps tested in distal segmental defects of pediatric femur models. J Pediatr Orthop 2012, 32(5):461-6.
  • [22]Nectoux E, Giacomelli MC, Karger C, Gicquel P, Clavert JM: Use of end caps in elastic stable intramedullary nailing of femoral and tibial unstable fractures in children: preliminary results in 11 fractures. J Child Orthop 2008, 2(4):309-314.
  • [23]Kaiser MM, Zachert G, Wendlandt R, Rapp M, Eggert C, Stratmann C, Wessel LM, Schulz AP, Kienast B: Biomechanical analysis of a synthetic femoral spiral fracture model: Do End caps improve retrograde flexible intramedullary nail fixation? J Orthop Surg Res 2011, 6:46. BioMed Central Full Text
  • [24]Tschegg EK, Herndler S, Weninger P, Jamek M, Stanzl-Tschegg S, Redl H: Stiffness analysis of tibia-implant system under cyclic loading. Mater Sci Eng 2008, C28:1203-1208.
  • [25]Tschegg EK, Lindtner RA, Doblhoff-Dier V, Stanzl-Tschegg SE, Holzlechner G, Castellani C, Imwinkelried T, Weinberg A: Characterization methods of bone-implant-interfaces of bioresorbable and titanium implants by fracture mechanical means. J Mech Behav Biomed Mat 2010, 4(5):766-775.
  • [26]Kaiser MM, Wessel LM, Zachert G, Stratmann C, Eggert R, Gros N, Schulze-Hessing M, Kienast B, Rapp M: Biomechanical analysis of a synthetic femur spiral fracture model: influence of different materials on the stiffness in flexible intramedullary nailing. Clin Biomech (Bristol, Avon) 2011, 26(6):592-597.
  • [27]Kaiser MM, Zachert G, Wendlandt R, Eggert R, Stratmann C, Gros N, Schulze-Hessing M, Rapp M: Increasing stability by pre-bending the nails in elastic stable intramedullary nailing: a biomechanical analysis of a synthetic femoral spiral fracture model. J Bone Joint Surg Br 2012, 94(5):713-718.
  • [28]Slongo T, Audige L, Clavert JM, Lutz N, Frick S, Hunter J: The AO comprehensive classification of pediatric long-bone fractures: a web-based multicenter agreement study. J Pediatr Orthop 2007, 27(2):171-180.
  • [29]Kamphaus A, Rapp M, Wessel LM, Buchholz M, Massalme E, Schneidmuller D, Roeder C, Kaiser MM: [LiLa classification for paediatric long bone fractures: intraobserver and interobserver reliability. Unfallchirurg 2013. [Epud ahead of print]
  • [30]Lascombes P, Haumont T, Journeau P: Use and abuse of flexible intramedullary nailing in children and adolescents. J Pediatr Orthop 2006, 26(6):827-834.
  • [31]Jubel A, Andermahr J, Prokop A, Bergmann H, Isenberg J, Rehm KE: Pitfalls and complications of elastic stable intramedullary nailing (ESIN) of femoral fractures in infancy. Unfallchirurg 2004, 107(9):744-749.
  • [32]Moroz LA, Launay F, Kocher MS, Newton PO, Frick SL, Sponseller PD, Flynn JM: Titanium elastic nailing of fractures of the femur in children. Predictors of complications and poor outcome. J Bone Joint Surg Br 2006, 88(10):1361-1366.
  • [33]Kaiser MM, Albers K, Wessel LM: Technical problems and complications with ESIN-Osteosynthesis of the lower extremitites. Abstractband Eur J Trauma Emerg Surg 2008, 34(2):207.
  • [34]Oh CW, Park BC, Kim PT, Kyung HS, Kim SJ, Ihn JC: Retrograde flexible intramedullary nailing in children’s femoral fractures. Int Orthop 2002, 26(1):52-55.
  • [35]Fricka KB, Mahar AT, Lee SS, Newton PO: Biomechanical analysis of antegrade and retrograde flexible intramedullary nail fixation of pediatric femoral fractures using a synthetic bone model. J Pediatr Orthop 2004, 24(2):167-171.
  • [36]Mehlman CT, Nemeth NM, Glos DL: Antegrade versus retrograde titanium elastic nail fixation of pediatric distal-third femoral-shaft fractures: a mechanical study. J Orthop Trauma 2006, 20(9):608-612.
  • [37]Crist BD, Dart BR, Czuwala PJ, Olney BW, Pence CD: Using flexible nails to improve stabilization of proximal femur fractures in adolescents. Am J Orthop 2006, 35(1):37-41.
  • [38]Gwyn DT, Olney BW, Dart BR, Czuwala PJ: Rotational control of various pediatric femur fractures stabilized with titanium elastic intramedullary nails. J Pediatr Orthop 2004, 24(2):172-177.
  • [39]Benz G, Kallieris S, Blume U: Biomechanik des experimentell gesetzten Biege- und Torsionsbruchs vor und nach Versorgung mit Nancy-Nägeln. Zentralbl Kinderchir 2000, 9:104-109.
  • [40]Chong AC, Friis EA, Ballard GP, Czuwala PJ, Cooke FW: Fatigue performance of composite analogue femur constructs under high activity loading. Ann Biomed Eng 2007, 35(7):1196-1205.
  • [41]Chong AC, Miller F, Buxton M, Friis EA: Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng 2007, 129(4):487-493.
  • [42]Cristofolini L, Viceconti M, Cappello A, Toni A: Mechanical validation of whole bone composite femur models. J Biomech 1996, 29(4):525-535.
  文献评价指标  
  下载次数:40次 浏览次数:15次