期刊论文详细信息
BMC Evolutionary Biology
The complex origin of Astyanax cavefish
Joshua B Gross1 
[1] Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, OH, 45221, USA
关键词: Genetics;    Cave biology;    Regressive phenotypic evolution;   
Others  :  1140959
DOI  :  10.1186/1471-2148-12-105
 received in 2012-05-31, accepted in 2012-06-30,  发布年份 2012
PDF
【 摘 要 】

Background

The loss of phenotypic characters is a common feature of evolution. Cave organisms provide excellent models for investigating the underlying patterns and processes governing the evolutionary loss of phenotypic traits. The blind Mexican cavefish, Astyanax mexicanus, represents a particularly strong model for both developmental and genetic analyses as these fish can be raised in the laboratory and hybridized with conspecific surface form counterparts to produce large F2 pedigrees. As studies have begun to illuminate the genetic bases for trait evolution in these cavefish, it has become increasingly important to understand these phenotypic changes within the context of cavefish origins. Understanding these origins is a challenge. For instance, widespread convergence on similar features renders morphological characters less informative. In addition, current and past gene flow between surface and cave forms have complicated the delineation of particular cave populations.

Results

Past population-level analyses have sought to: 1) estimate at what time in the geological past cave forms became isolated from surface-dwelling ancestors, 2) define the extent to which cave form populations originated from a common invasion (single origin hypothesis) or several invasions (multiple origin hypothesis), and 3) clarify the role of geological and climatic events in Astyanax cavefish evolution. In recent years, thanks to the combined use of morphological and genetic data, a much clearer picture has emerged regarding the origins of Astyanax cavefish.

Conclusions

The consensus view, based on several recent studies, is that cave forms originated from at least two distinct ancestral surface-dwelling stocks over the past several million years. In addition, each stock gave rise to multiple invasions of the subterranean biotope. The older stock is believed to have invaded the El Abra caves at least three times while the new stock separately invaded the northern Guatemala and western Micos caves. This renewed picture of Astyanax cavefish origins will help investigators draw conclusions regarding the evolution of phenotypic traits through parallelism versus convergence. Additionally, it will help us understand how the presence of cave-associated traits in old versus young cave populations may be influenced by the time since isolation in the cave environment. This will, in turn, help to inform our broader understanding of the forces that govern the evolution of phenotypic loss.

【 授权许可】

   
2012 Gross; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325161914873.pdf 1035KB PDF download
Figure 2. 98KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Culver DC, Kane TC, Fong DW: Adaptation and natural selection in caves: The evolution of Gammarus minus. Harvard University Press, Cambridge, Mass; 1995.
  • [2]Panaram K, Borowsky R, Quattro JM: Gene flow and genetic variability in cave and surface populations of the Mexican tetra, Astyanax mexicanus (Teleostei: Characidae). Copeia 1985, 409-416.
  • [3]Culver DC: Cave life: Evolution and ecology. Harvard University Press, Cambridge, MA, USA; 1982.
  • [4]Breder CM: Descriptive ecology of La Cueva Chica, with especial reference to the blind fish, Anoptichthys. Zoologica 1942, 27:7-15.
  • [5]Mitchell RW, Russell WH, Elliott WR: Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution. Texas Tech Press, Lubbock, Texas; 1977.
  • [6]Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, Zon LI, Borowsky R, Tabin CJ: Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 2006, 38:107-111.
  • [7]Dowling TE, Martasian DP, Jeffery WR: Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus. Mol Biol Evol 2002, 19:446-455.
  • [8]Bradic M, Beerli P, Garcia-de Leon FJ, Esquivel-Bobadilla S, Borowsky RL: Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 2012, 12:9. BioMed Central Full Text
  • [9]Strecker U, Hausdorf B, Wilkens H: Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 2012, 62:62-70.
  • [10]Strecker U, Faundez VH, Wilkens H: Phylogeography of surface and cave Astyanax (Teleostei) from Central and North America based on cytochrome b sequence data. Mol Phylogenet Evol 2004, 33:469-481.
  • [11]Ornelas-Garcia CP, Dominguez-Dominguez O, Doadrio I: Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evol Biol 2008, 8:340. BioMed Central Full Text
  • [12]Stehli FG, Webb SD: The Great American biotic interchange. Plenum Press, New York; 1985.
  • [13]Aguayo-Camargo JE: The middle Cretaceous El Abra Limestone at its type locality (facies, diagenesis and oil emplacement), east-central Mexico. Revista Mexicana de Ciencias Geológicas 1998, 15:1-8.
  • [14]Armstrong-Altrin J, Madhavaraju J, Sial A, Kasper-Zubillaga J, Nagarajan R, Flores-Castro K, Rodríguez J: Petrography and stable isotope geochemistry of the cretaceous El Abra Limestones (Actopan), Mexico: Implication on diagenesis. J Geol Soc India 2011, 77:349-359.
  • [15]Wilkens H: Genetic interpretation of regressive evolutionary processes: Studies on hybrid eyes of two Astyanax populations (Characidae, Pisces). Evolution 1971, 25:530-544.
  • [16]Avise JC, Selander RK: Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 1972, 26:1-19.
  • [17]Maria Pons J, Vicens E, Pichardo Y, Aguilar J, Oviedo A, Alencaster G, Garcia-Barrera P: A New early Campanian rudist fauna from San Luis Potosi in Mexico and its taxonomic and stratigraphic significance. J Paleontol 2010, 84:974-995.
  • [18]Muir JM: Geology of the Tampico Region, Mexico. Special Volume ed. American Association of Petroleum Geologists, Tulsa, Oklahoma; 1936.
  • [19]Bonet F: Biostratigraphic notes on the Cretaceous of eastern Mexico. In Geology of Peregrina Canyon and Sierra de El Abra. Geological Society, Mexico Corpus Christi; 1963:36-48.
  • [20]Janson X, Kerans C, Loucks R, Marhx MA, Reyes C, Murguia F: Seismic architecture of a Lower Cretaceous platform-to-slope system, Santa Agueda and Poza Rica fields, Mexico. AAPG Bull 2011, 95:105-146.
  • [21]Hausdorf B, Wilkens H, Strecker U: Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of Astyanax in Mexico (Characidae, Teleostei). Mol Phylogenet Evol 2011, 60:89-97.
  • [22]Hüppop K: Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): A comparison of epigean and hypogean populations. Envir Biol Fishes 1986, 17:299-308.
  • [23]Strecker U, Bernatchez L, Wilkens H: Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Mol Ecol 2003, 12:699-710.
  • [24]Espinasa L, Borowsky R: Origins and relationship of blind cave populations of the Blind Mexican tetra, Astyanax fasciatus, in the Sierra de El Abra region of Mexico. Envir Biol Fishes 2001, 62:233-237.
  • [25]Wilkens H: Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces): Support for the neutral mutation theory. In Evolutionary Biology. Edited by Hecht MK, Wallace B. Plenum Publishing Corporation, New York, NY; 1988:271-367.
  • [26]Myers GS: Derivation of the freshwater fish fauna of Central America. Copeia 1966, 1966:766-773.
  • [27]Bussing WA: The Great American biotic interchange. Volume 4. In Patterns of distribution of the Central American ichthyofauna. Edited by Stehli FG, Webb SD. Plenum Press, New York; 1985:453-473.
  • [28]Bermingham E, Martin AP: Comparative mtDNA phylogeography of neotropical freshwater fishes: Testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol 1998, 7:499-517.
  • [29]Barr TC: The Pseudanopthalmus of the Appalachian Valley (Coleoptera: Carabidae). Amer Mid Nat 1965, 73:41-72.
  • [30]Barr TC: A synopsis of cave beetles of the genus Pseudanopthalmus of the Mitchell Plain in Southern Indiana (Coleoptera, Carabidae). Amer Mid Nat 1960, 63:307-320.
  • [31]Moreau RE: The bird faunas of Africa and its islands. Academic, New York; 1966.
  • [32]Haffer J: Speciation in Amazonian forest birds. Science 1969, 165:131-137.
  • [33]Mitchell RW: A comparison of temperate and tropical cave communities. Southwest Nat 1969, 14:73-88.
  • [34]Hobbs HH, Barr TC: The origins and affinities of the troglobitic crayfishes of North America (Decapoda, Astacidae). I. The genus Cambarus. Amer Mid Nat 1960, 64:12-33.
  • [35]Kosswig C: Über das Tempo evolutorischer Prozesse. Zool Beitr N F 1967, 13:441-450.
  • [36]Wilkens H: Regressive evolution and phylogenetic age: The history of colonization of freshwaters of Yucatan by fish and Crustacea. Assoc Mex Cave Stud Bull 1982, 8:237-243.
  • [37]Fitzsimmons K: Tilapia Aquaculture in the Americas. Volume 2. In Tilapia aquaculture in Mexico. Edited by Costa-Pierce B, Rakocy J. The World Aquaculture Society, Baton Rouge; 2000:171-183.
  • [38]Breder CM, Rasquin P: Comparative studies in the light sensitivity of blind characins from a series of Mexican caves. Bull Amer Mus Nat Hist 1947, 89:325-351.
  • [39]Alvarez J: Revisión del género Anoptichthys con descipción de una especie nueva (Pisces, Characidae). An Esc Nac Cien Biol México 1946, 4:263-282.
  • [40]Şadoğlu P: Mendelian inheritance in the hybrids between the Mexican blind cave fishes and their overground ancestor. Verh Dtsch Zool Ges Graz 1957, 1957:432-439.
  • [41]Wilkens H: Beiträge zur Degeneration des Auges bei Cavernicolen, Genzahl und Manifestationsart Untersuchungen an mexikanischen Höhlenfischen. J Zool Syst Evol Res 1970, 8:1-47.
  • [42]Wilkens H, Burns RJ: A new Anoptichthys cave population. Ann Spéléol 1972, 27:263-270.
  • [43]Wilkens H, Strecker U: Convergent evolution of the cavefish Astyanax (Characidae: Teleostei): Genetic evidence from reduced eye-size and pigmentation. Biol J Linn Soc 2003, 80:545-554.
  • [44]Borowsky R: Restoring sight in blind cavefish. Curr Biol 2008, 18:R23-R24.
  • [45]Zardoya R, Doadrio I: Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J Mol Evol 1999, 49:227-237.
  • [46]Juberthie C: Subterranean Ecosystems. Volume 30. In Conservation of subterranean habitats and species. Edited by Wilkens H, Culver DC, Humphreys WF. Elsevier, Amsterdam; 2000:691-700.
  • [47]Díaz de Gamero M: The changing course of the Orinoco River during the Neogene: A review. Palaeogeogr Palaeoclimatol Palaeoecol 1996, 123:385-402.
  • [48]Ferrari L, Lopez-Martinez M, Aguirre-Diaz G, Carrasco-Nunez G: Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology 1999, 27:303-306.
  • [49]Perdices A, Bermingham EAM, Doadrio I: Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Mol Phylogenet Evol 2002, 25:172-189.
  • [50]Soulé M: The variation problem: The gene flow-variation hypothesis. Taxon 1971, 20:37-50.
  • [51]Barr TC: Cave ecology and the evolution of troglobites. Evol Biol 1968, 2:35-102.
  • [52]Poulson TL, White WB: The cave environment. Science 1969, 165:971-981.
  • [53]Espinasa L, Borowsky R: Eyed cave fish in a karst window. J Cave Karst Studies 2000, 62:180-183.
  • [54]Wilkens H, Hüppop K: Sympatric speciation in cave fishes? J Zool Syst Evol Res 1986, 24:223-230.
  • [55]Langecker TG, Wilkens H, Junge P: Introgressive hybridization in the Pachón Cave population of Astyanax fasciatus (Teleostei: Characidae). Ichthyol Explor Freshwaters 1991, 2:209-212.
  • [56]Gross JB, Borowsky R, Tabin CJ: A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genetics 2009, 5:e1000326.
  文献评价指标  
  下载次数:4次 浏览次数:20次