期刊论文详细信息
BMC Complementary and Alternative Medicine
Chungsimyeonja-eum inhibits inflammatory responses in RAW 264.7 macrophages and HaCaT keratinocytes
Soo-Jin Jeong2  Hyeun-Kyoo Shin3  Seong-Eun Jin3  Sae-Rom Yoo3  Chang-Seob Seo3  Kim Yeji3  Hye-Sun Lim1 
[1] Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Chungcheongbuk-do 28159, Republic of Korea;Korean Medicine Life Science, University of Science & Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, Republic of Korea;K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
关键词: Keratinocyte;    Macrophage;    Chemokine;    Cytokine;    Inflammation;    Chungsimyeonja-eum;   
Others  :  1233228
DOI  :  10.1186/s12906-015-0902-2
 received in 2015-07-07, accepted in 2015-10-07,  发布年份 2015
PDF
【 摘 要 】

Background

Chungsimyeonja-eum (CSYJE) is an herbal prescription used in traditional Oriental medicine for treating cerebral infarction by reducing ischemic damage. However, the effects of CSYJE on inflammation have not been verified scientifically.

Methods

Anti-inflammatory effects of CSYJE was investigated to dertermine the inhibitory effects of CSYJE against inflammation using RAW 264.7 mouse macrophages and HaCaT human keratinocytes. To measure the effects of CSYJE on inflammatory mediators and cytokines/chemokines, we used the following methods: cell viability assay, enzyme-linked immunosorbent assay (ELISA), western blotting, immunocytochemistry. RAW 264.7 cells were pretreated with CSYJE (250, 500, or 1000 μg/mL) for 4 h and treated with lipopolysaccharide (LPS) for additional 20 h. HaCaT cells were stimulated with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) (TI), and CSYJE (125, 250, or 500 μg/mL) for 24 h.

Results

CSYJE suppressed the production of nitric oxide (NO, IC 501000 μg/mL), prostaglandin E 2(PGE 2 , IC 50  = 12.1 μg/mL), and interleukin (IL)-6 (IC 50  = 248 μg/mL) in LPS-stimulated RAW 264.7 cells. CSYJE suppressed the effects of TI on the production of thymus and activation-regulated chemokine (TARC, IC 50  = 330.2 μg/mL), macrophage-derived chemokine (MDC/CCL22, IC 50  = 52.5 μg/mL), regulated on activation, normal T-cell expressed and secreted (RANTES/CCL5, IC 50  = 372.9 μg/mL), and IL-8 (IC 50  = 345.1 μg/mL) in HaCaT cells. CSYJE inhibited TI-stimulated STAT1 phosphorylation in a dose-dependent manner and nuclear translocation at 500 μg/mL in HaCaT cells.

Conclusion

Our results suggest a possible therapeutic application of CSYJE for treating inflammatory diseases.

【 授权许可】

   
2015 Lim et al.

【 预 览 】
附件列表
Files Size Format View
20151119060228650.pdf 1382KB PDF download
Fig. 5. 51KB Image download
Fig. 4. 36KB Image download
Fig. 3. 25KB Image download
Fig. 2. 19KB Image download
Fig. 1. 55KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001; 1(8):1397-406.
  • [2]Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond). 2003; 104(1):27-38.
  • [3]Maruotti N, Cantatore FP, Crivellato E, Vacca A, Ribatti D. Macrophages in rheumatoid arthritis. Histol Histopathol. 2007; 22(5):581-6.
  • [4]Kakinuma T, Nakamura K, Wakugawa M, Mitsui H, Tada Y, Saeki H et al.. Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activation-regulated chemokine level is closely related with disease activity. J Allergy Clin Immunol. 2001; 107(3):535-41.
  • [5]Pivarcsi A, Homey B. Chemokine networks in atopic dermatitis: traffic signals of disease. Curr Allergy Asthma Rep. 2005; 5(4):284-90.
  • [6]Yamashita U, Kuroda E. Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit Rev Immunol. 2002; 22(2):105-14.
  • [7]Saeki H, Tamaki K. Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J Dermatol Sci. 2006; 43(2):75-84.
  • [8]Casas C, Ribet V, Alvarez-Georges S, Sibaud V, Guerrero D, Schmitt AM et al.. Modulation of Interleukin-8 and staphylococcal flora by Avene hydrotherapy in patients suffering from chronic inflammatory dermatoses. J Eur Acad Dermatol Venereol. 2011; 25 Suppl 1:19-23.
  • [9]Kwon DJ, Bae YS, Ju SM, Goh AR, Youn GS, Choi SY et al.. Casuarinin suppresses TARC/CCL17 and MDC/CCL22 production via blockade of NF-kappaB and STAT1 activation in HaCaT cells. Biochem Biophys Res Commun. 2012; 417(4):1254-9.
  • [10]Singh RK, Dai Y, Staudinger JL, Muma NA. Activation of the JAK-STAT pathway is necessary for desensitization of 5-HT2A receptor-stimulated phospholipase C signalling by olanzapine, clozapine and MDL 100907. Int J Neuropsychopharmacol. 2009; 12(5):651-65.
  • [11]Takaoka A, Taniguchi T. New aspects of IFN-alpha/beta signalling in immunity, oncogenesis and bone metabolism. Cancer Sci. 2003; 94(5):405-11.
  • [12]Tu HQ, Li XY, Tang MY, Gao JW, Xu LF, Chen ZQ et al.. Effects of tacrolimus on IFN-gamma signaling in keratinocytes: possible mechanisms by which tacrolimus affects IFN-gamma-dependent skin inflammation. Eur J Dermatol. 2011; 21(1):22-31.
  • [13]Han EH, Hwang YP, Choi JH, Yang JH, Seo JK, Chung YC et al.. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-kappaB and STAT1 activation. Environ Toxicol Pharmacol. 2011; 32(2):136-45.
  • [14]Hongqin T, Xinyu L, Heng G, Lanfang X, Yongfang W, Shasha S. Triptolide inhibits IFN-gamma signaling via the Jak/STAT pathway in HaCaT keratinocytes. Phytother Res. 2011; 25(11):1678-85.
  • [15]Ko SJ, Shin YJ, Jang WS, Ha YJ, Lee SA, Ahn MS et al.. Protective Effects of Chungsimyeonja-eum on Glutamate-induced Apoptosis in C6 Glial Cells. Kor J Orient Int Med. 2010; 31:54-65.
  • [16]Park SI, Lee WC. Effect of Chengsimyeunja-eum and Sunghyangjungi-san on streptozotocin-induced ischemic damaged diabetic rats. J Kor Orient Med. 2007; 28:216-31.
  • [17]Yoon JH, Ko IK, Shin MS, Kim CJ, Lee CY. Anti-stress and anti-nociceptive effects of the aqueous extracts of Chungsimyeonja-eum against immobilization stress and incision pain in rats. J Orient Med Physiol. 2007; 21:874-83.
  • [18]Hur J. Donguibogam. Namsandang, Seoul, Korea; 2004.
  • [19]Li G, Xu ML, Lee CS, Woo MH, Chang HW, Son JK. Cytotoxicity and DNA topoisomerases inhibitory activity of constituents from the sclerotium of Poria cocos. Arch Pharm Res. 2004; 27(8):829-33.
  • [20]Hoang L, Kwon SH, Kim KA, Hur JM, Kang YH, Song KS. Chemical standardization of Poria cocos. Kor J Pharmacogn. 2005; 36:177-85.
  • [21]Shan SM, Luo JG, Huang F, Kong LY. Chemical characteristics combined with bioactivity for comprehensive evaluation of Panax ginseng C.A. Meyer in different ages and seasons based on HPLC-DAD and chemometric methods. J Pharm Biomed Anal. 2014; 89:76-82.
  • [22]Lee EJ, Yean MH, Jung HS, Kim JS, Kang SS. Phytochemical studies on Astragalus Root (2) – Flavonoids and a lignin. Nat Prod Sci. 2008; 14:131-7.
  • [23]Tong L, Wan M, Zhang L, Zhu Y, Sun H, Bi K. Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin of Radix scutellariae extract in rat plasma by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2012; 70:6-12.
  • [24]Kim BH, Park KS, Chang IM. Elucidation of anti-inflammatory potencies of Eucommia ulmoides bark and Plantago asiatica seeds. J Med Food. 2009; 12(4):764-9.
  • [25]Oh JS, Lee JG, Jung HW, Choi JY, Choi EH, Kim DC et al.. Isolation of melanin biosynthesis inhibitory compounds from the seeds of Plantago asiatica L. Kor J Pharmacogn. 2007; 38:376-81.
  • [26]Shin JS. Saponin composition of Liriope platyphlla and Ophiopogon japonicus. Kor J Srop Sci. 2002; 47:236-9.
  • [27]Mocan A, Vlase L, Vodnar DC, Bischin C, Hanganu D, Gheldiu AM et al.. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules. 2014; 19(7):10056-73.
  • [28]Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A. 2009; 1216(11):1954-69.
  • [29]Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol. 1995; 35:655-77.
  • [30]Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007; 15(6):252-9.
  • [31]Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002; 53:35-57.
  • [32]Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol. 2002; 2(5):603-30.
  • [33]Singh VP, Patil CS, Jain NK, Kulkarni SK. Aggravation of inflammatory bowel disease by cyclooxygenase-2 inhibitors in rats. Pharmacology. 2004; 72(2):77-84.
  • [34]Ci X, Ren R, Xu K, Li H, Yu Q, Song Y et al.. Schisantherin A exhibits anti-inflammatory properties by down-regulating NF-kappaB and MAPK signaling pathways in lipopolysaccharide-treated RAW 264.7 cells. Inflammation. 2010; 33(2):126-36.
  • [35]Jahnz-Rozyk K, Targowski T, Paluchowska E, Owczarek W, Kucharczyk A. Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis. Allergy. 2005; 60(5):685-8.
  • [36]Shimada Y, Takehara K, Sato S. Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. J Dermatol Sci. 2004; 34(3):201-8.
  • [37]Ju SM, Song HY, Lee SJ, Seo WY, Sin DH, Goh AR et al.. Suppression of thymus- and activation-regulated chemokine (TARC/CCL17) production by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose via blockade of NF-kappaB and STAT1 activation in the HaCaT cells. Biochem Biophys Res Commun. 2009; 387(1):115-20.
  文献评价指标  
  下载次数:52次 浏览次数:18次