期刊论文详细信息
BMC Genomics
RNA-seq analysis reveals significant transcriptome changes in turbot (Scophthalmus maximus) suffering severe enteromyxosis
Paulino Martínez4  María Isabel Quiroga3  Ariadna Sitjà-Bobadilla6  María José Redondo6  Belén G Pardo4  Roberto Bermúdez5  Ana Paula Losada3  Peter W Harrison1  Paolo Ronza3  Diego Robledo2 
[1] Department of Genetics, Evolution and Environment, University College London, London, UK;Departamento de Genética, Facultad de Biología (CIBUS), Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain;Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain;Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain;Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain;Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain
关键词: Digestive function;    Cytoskeleton;    Erythropoiesis;    Apoptosis;    Immune response;    Enteromyxosis;    Enteromyxum scophthalmi;    Turbot;    Transcriptome;    RNA-seq;   
Others  :  1122644
DOI  :  10.1186/1471-2164-15-1149
 received in 2014-05-20, accepted in 2014-12-16,  发布年份 2014
PDF
【 摘 要 】

Background

Enteromyxosis caused by the intestinal myxozoan parasite Enteromyxum scophthalmi is a serious threat for turbot (Scophthalmus maximus, L.) aquaculture, causing severe catarrhal enteritis leading to a cachectic syndrome, with no therapeutic options available. There are still many aspects of host-parasite interaction and disease pathogenesis that are yet to be elucidated, and to date, no analysis of the transcriptomic changes induced by E. scophthalmi in turbot organs has been conducted. In this study, RNA-seq technology was applied to head kidney, spleen and pyloric caeca of severely infected turbot with the aim of furthering our understanding of the pathogenetic mechanisms and turbot immune response against enteromyxosis.

Results

A huge amount of information was generated with more than 23,000 identified genes in the three organs, amongst which 4,762 were differently expressed (DE) between infected and control fish. Associate gene functions were studied based on gene ontology terms and available literature, and the most interesting DE genes were classified into five categories: 1) immune and defence response; 2) apoptosis and cell proliferation; 3) iron metabolism and erythropoiesis; 4) cytoskeleton and extracellular matrix and 5) metabolism and digestive function. The analysis of down-regulated genes of the first category revealed evidences of a connexion failure between innate and adaptive immune response, especially represented by a high number of DE interferon-related genes in the three organs. Furthermore, we found an intense activation of local immune response at intestinal level that appeared exacerbated, whereas in kidney and spleen genes involved in adaptive immune response were mainly down-regulated. The apoptotic machinery was only clearly activated in pyloric caeca, while kidney and spleen showed a marked depression of genes related to erythropoiesis, probably related to disorders in iron homeostasis. The genetic signature of the causes and consequences of cachexia was also demonstrated by the down-regulation of the genes encoding structural proteins and those involved in the digestive metabolism.

Conclusions

This transcriptomic study has enabled us to gain a better understanding of the pathogenesis of enteromyxosis and identify a large number of DE target genes that bring us closer to the development of strategies designed to effectively combat this pathogen.

【 授权许可】

   
2014 Robledo et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214024414433.pdf 1568KB PDF download
Figure 5. 79KB Image download
Figure 4. 94KB Image download
Figure 3. 108KB Image download
Figure 2. 80KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]La Acuicultura en España 2013 http://www.apromar.es/content/informes-anuales webcite
  • [2]Ribas L, Pardo BG, Fernández C, Álvarez-Dios JA, Gómez-Tato A, Quiroga MI, Planas JV, Sitjà-Bobadilla A, Martínez P, Piferrer F: A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC Genomics 2013, 14:180. BioMed Central Full Text
  • [3]Hermida M, Bouza C, Fernández C, Sciara AA, Rodríguez-Ramilo ST, Fernández J, Martínez P: Compilation of mapping resources in turbot (Scophthalmus maximus): a new integrated consensus genetic map. Aquaculture 2013, 414–415:19-25.
  • [4]Losada AP: “Enteromixosis del rodaballo. Esclarecimiento de mecanismos patogénicos y rutas de respuesta inmunitaria”. PhD thesis. Santiago de Compostela: Universidad de Santiago de Compostela, Departamento de Ciencias Clínica Veterianrias; 2013.
  • [5]Zhi-Hui H, Ai-Jun M, Xin-An W, Ji-Lin L: The interaction of temperature, salinity and body weight on growth rate and feed conversion rate in turbot (Scophthalmus maximus). Aquaculturein press
  • [6]Sitjà-Bobadilla A, Palenzuela O: Enteromyxum Species. In Fish Parasites: Pathobiology and Protection. Edited by Woo PTK, Buchmann K. UK: CABI publishing; 2012:163-76.
  • [7]Branson E, Riaza A, Álvarez-Pellitero P: Myxosporean infection causing intestinal disease in farmed turbot, Scophthalmus maximus (L.), (Teleostei: Scophthalmidae). J Fish Dis 1999, 22(5):395-9.
  • [8]Bermúdez R, Losada AP, Vázquez S, Redondo MJ, Álvarez-Pellitero P, Quiroga MI: Light and electron microscopic studies on turbot Psetta maxima infected with Enteromyxum scophthalmi: histopathology of turbot enteromyxosis. Dis Aquat Organ 2010, 89(3):209-21.
  • [9]Palenzuela O, López Grandal E, Zarza C, Álvarez-Pellitero P: Treatment of turbot enteromyxosis with antiparasitic drugs and bioactive natural extracts-supplemented feeds. 14th International Conference of the European Association of Fish Pathologists (EAFP) on Diseases of Fish and Shellfish: 2009; Prague, Czech Republic 2009, 142-3.
  • [10]Sitjà-Bobadilla A, Redondo MJ, Bermúdez R, Palenzuela O, Ferreiro I, Riaza A, Quiroga I, Nieto JM, Álvarez-Pellitero P: Innate and adaptive immune responses of turbot, Scophthalmus maximus (L.), following experimental infection with Enteromyxum scophthalmi (Myxosporea: Myxozoa). Fish Shellfish Immunol 2006, 21(5):485-500.
  • [11]Bermúdez R, Vigliano F, Marcaccini A, Sitjà-Bobadilla A, Quiroga MI, Nieto JM: Response of Ig-positive cells to Enteromyxum scophthalmi (Myxozoa) experimental infection in turbot, Scophthalmus maximus (L.): a histopathological and immunohistochemical study. Fish Shellfish Immunol 2006, 21(5):501-12.
  • [12]Bermúdez R, Vigliano F, Quiroga MI, Nieto JM, Bosi G, Domeneghini C: Immunohistochemical study on the neuroendocrine system of the digestive tract of turbot, Scophthalmus maximus (L.), infected by Enteromyxum scophthalmi (Myxozoa). Fish Shellfish Immunol 2007, 22(3):252-63.
  • [13]Redondo MJ, Cortadellas N, Palenzuela O, Álvarez-Pellitero P: Detection of carbohydrate terminals in the enteric parasite Enteromyxum scophthalmi (Myxozoa) and possible interactions with its fish host Psetta maxima. Parasitol Res 2008, 102(6):1257-67.
  • [14]Redondo MJ, Álvarez-Pellitero P: The effect of lectins on the attachment and invasion of Enteromyxum scophthalmi (Myxozoa) in turbot (Psetta maxima L.) intestinal epithelium in vitro. Exp Parasitol 2010, 126(4):577-81.
  • [15]Losada AP, Bermúdez R, Faílde LD, Quiroga MI: Quantitative and qualitative evaluation of iNOS expression in turbot (Psetta maxima) infected with Enteromyxum scophthalmi. Fish Shellfish Immunol 2012, 32(2):243-8.
  • [16]Losada AP, Bermúdez R, Faílde LD, de Ocenda MVR, Quiroga MI: Study of the distribution of active caspase-3-positive cells in turbot, Scophthalmus maximus (L.), enteromyxosis. J Fish Dis 2014, 37(1):21-32.
  • [17]Davey GC, Calduch-Giner JA, Houeix B, Talbot A, Sitjà-Bobadilla A, Prunet P, Pérez-Sánchez J, Cairns MT: Molecular profiling of the gilthead sea bream (Sparus aurata L.) response to chronic exposure to the myxosporean parasite Enteromyxum leei. Mol Immunol 2011, 48(15–16):2102-12.
  • [18]Pérez-Cordón G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J: Interleukin gene expression is strongly modulated at the local level in a fish–parasite model. Fish Shellfish Immunol 2014, 37(2):201-8.
  • [19]Qian X, Ba Y, Zhuang Q, Zhong G: RNA-Seq technology and its application in fish transcriptomics. Omics 2014, 18(2):98-110.
  • [20]Millán A, Gómez-Tato A, Pardo B, Fernández C, Bouza C, Vera M, Álvarez-Dios J, Cabaleiro S, Lamas J, Lemos M, Martínez P: Gene expression profiles of the spleen, liver, and head kidney in Turbot (Scophthalmus maximus) along the infection process with Aeromonas salmonicida using an immune-enriched oligo-microarray. Mar Biotechnol 2011, 13(6):1099-114.
  • [21]Pardo BG, Millán A, Gómez-Tato A, Fernández C, Bouza C, Álvarez-Dios JA, Cabaleiro S, Lamas J, Leiro JM, Martínez P: Gene expression profiles of spleen, liver, and head kidney in turbot (Scophthalmus maximus) along the infection process with Philasterides dicentrarchi using an immune-enriched oligo-microarray. Mar Biotechnol 2012, 14(5):570-82.
  • [22]Rodríguez-Ramilo ST, Fernández J, Toro MA, Bouza C, Hermida M, Fernández C, Pardo BG, Cabaleiro S, Martínez P: Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus). Anim Genet 2013, 44(2):149-57.
  • [23]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-17.
  • [24]Morozova O, Hirst M, Marra MA: Applications of new sequencing technologies for transcriptome analysis. Annu Revi Genom Hum G 2009, 10(1):135-51.
  • [25]Nielsen R, Paul JS, Albrechten A, Song YS: Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 2011, 12(6):443-51.
  • [26]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [27]Redondo MJ, Palenzuela O, Álvarez-Pellitero P: Studies on transmission and life cycle of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. Folia Parasit 2004, 51(2–3):188-98.
  • [28]Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, Vorup-Jensen T, Jensenius JC: MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 2001, 15:127-35.
  • [29]Hajela K, Kojima M, Ambrus G, Wong KH, Moffatt BE, Ferluga J, Hajela S, Gal P, Sim RB: The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 2002, 205:467-75.
  • [30]Gadjeva M, Takahashi K, Thiel S: Mannan-binding lectin–a soluble pattern recognition molecule. Mol Immunol 2004, 41:113-21.
  • [31]Fujita T, Matsushita M, Endo Y: The lectin-complement pathway–its role in innate immunity and evolution. Immunol Rev 2004, 198:185-202.
  • [32]Kania PW, Sorensen RR, Koch C, Brandt J, Kliem A, Vitved L, Hansen S, Skjodt K: Evolutionary conservation of mannan-binding lectin (MBL) in bony fish: identification, characterization and expression analysis of three bona fide collectin homologues of MBL in the rainbow trout (Onchorhynchus mykiss). Fish Shellfish Immunol 2010, 29:910-20.
  • [33]Gruden-Movsesijan A, Petrovic M, Sofronic-Milosavljevic L: Interaction of mannan-binding lectin with Trichinella spiralis glycoproteins, a possible innate immune mechanism. Parasite Immunol 2003, 25:545-52.
  • [34]Ambrosio AR, De Messias-Reason IJ: Leishmania (Viannia) braziliensis: interaction of mannose-binding lectin with surface glycoconjugates and complement activation. An antibody-independent defence mechanism. Parasite Immunol 2005, 27:333-40.
  • [35]Evans-Osses I, Ansa-Addo EA, Inal JM, Ramirez MI: Involvement of lectin pathway activation in the complement killing of Giardia intestinalis. Biochem Bioph Res Co 2010, 395:382-6.
  • [36]Cestari I, Evans-Osses I, Schlapbach LJ, de Messias-Reason I, Ramirez MI: Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites. Mol Immunol 2013, 53:328-34.
  • [37]Sahu A, Lambris JD: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 2001, 180:35-48.
  • [38]Cuesta A, Munóz P, Rodríguez A, Salinas I, Sitjà-Bobadilla A, Álvarez-Pellitero P, Esteban MA, Meseguer J: Gilthead seabream ( Sparus aurata L.) innate defence against the parasite Enteromyxum leei (Myxozoa). Parasitology 2006, 132:95-104.
  • [39]van Vliet SJ, Garcia-Vallejo JJ, van Kooyk Y: Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol Cell Biol 2008, 86:580-7.
  • [40]Vázquez-Mendoza A, Carrero JC, Rodríguez-Sosa M: Parasitic infections: a role for C-type lectins receptors. Biomed Res Int 2013, 2013:456352.
  • [41]Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG: Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000, 100:575-85.
  • [42]Lugo-Villarino G, Balla KM, Stachura DL, Bañuelos K, Werneck MBF, Traver D: Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci U S A 2010, 107(36):15850-5.
  • [43]Y-h H, Zhang M, Sun L: Expression of Scophthalmus maximus CD83 correlates with bacterial infection and antigen stimulation. Fish Shellfish Immunol 2010, 29(4):608-14.
  • [44]Rauta PR, Nayak B, Das S: Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 2012, 148:23-33.
  • [45]Sitjà-Bobadilla A, Palenzuela O, Riaza A, Macias MA, Álvarez-Pellitero P: Protective acquired immunity to Enteromyxum scophthalmi (Myxozoa) is related to specific antibodies in Psetta maxima (L.) (Teleostei). Scand J Immunol 2007, 66(1):26-34.
  • [46]Keller AD, Maniatis T: Identification and characterization of a novel repressor of beta-interferon gene expression. Gene Dev 1991, 5(5):868-79.
  • [47]Le Bon A, Tough DF: Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 2002, 14(4):432-6.
  • [48]Schroder K, Hertzog PJ, Ravasi T, Hume DA: Interferon-gamma: an overview of signals, mechanisms and functions. J Leukocyte Biol 2004, 75(2):163-89.
  • [49]McCall MBB, Sauerwein RW: Interferon-γ—central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukocyte Biol 2010, 88(6):1131-43.
  • [50]Zou J, Secombes CJ: Teleost fish interferons and their role in immunity. Dev Comp Immunol 2011, 35(12):1376-87.
  • [51]Rappocciolo G, Birch J, Ellis SA: Down-regulation of MHC class I expression by equine herpesvirus-1. J Gen Virol 2003, 84(2):293-300.
  • [52]Vincent IE, Zannetti C, Lucifora J, Norder H, Protzer U, Hainaut P, Zoulim F, Tommasino M, Trépo C, Hasan U, Chemin I: Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells. PLoS One 2011, 6(10):e26315.
  • [53]Gainey MD, Rivenbark JG, Cho H, Yang L, Yokoyama WM: Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming. Proc Natl Acad Sci U S A 2012, 109(47):E3260-7.
  • [54]Song W, Kao W, Zhai A, Qian J, Li Y, Zhang Q, Zhao H, Hu Y, Li H, Zhang F: Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway. Biochem Bioph Res Co 2013, 438(4):619-23.
  • [55]Babu S, Blauvelt CP, Kumaraswami V, Nutman TB: Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. J Immunol 2005, 175(2):1170-6.
  • [56]Asteal F: A study of Immune responses to L. mexicana Antigens and Immunogenicity of L. donovani Centrin-3. PhD thesis. Nottingham: Nottingham Trent University, School of Science and Technology; 2011.
  • [57]Srivastava S, Pandey SP, Jha MK, Chandel HS, Saha B: Leishmania expressed lipophosphoglycan interacts with Toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses. Clin Exp Immunol 2013, 172(3):403-9.
  • [58]Young ND, Cooper GA, Nowak BF, Koop BF, Morrison RN: Coordinated down-regulation of the antigen processing machinery in the gills of amoebic gill disease-affected Atlantic salmon (Salmo salar L.). Mol Immunol 2008, 45(9):2581-97.
  • [59]Peck A, Mellins ED: Precarious balance: Th17 cells in host defense. Infect Immun 2010, 78(1):32-8.
  • [60]van de Veerdonk FL, Gresnigt MS, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG: Th17 responses and host defense against microorganisms: an overview. BMB Rep 2009, 42(12):776-87.
  • [61]Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y: Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003, 52(1):65-70.
  • [62]Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, Moretto M, Khan IA: Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 2005, 73(1):617-21.
  • [63]Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA: Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008, 29(6):947-57.
  • [64]Glass EJ: The molecular pathways underlying host resistance and tolerance to pathogens. Front Genet 2012, 3:263.
  • [65]Wynne JW, O’Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliott NG: Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. Mar Biotechnol 2008, 10(4):388-403.
  • [66]Bates JM, Akerlund J, Mittge E, Guillemin K: Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2007, 2(6):371-82.
  • [67]Bol-Schoenmakers M, Fiechter D, Raaben W, Hassing I, Bleumink R, Kruijswijk D, Maijoor K, Tersteeg-Zijderveld M, Brands R, Pieters R: Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur J Pharmacol 2010, 633(1–3):71-7.
  • [68]Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS: The effect of intestinal alkaline phosphatase on intestinal epithelial cells, macrophages and chronic colitis in mice. Life Sci 2014, 100(2):118-24.
  • [69]Keklikoglu N, Koray M, Kocaelli H, Akinci S: iNOS expression in oral and gastrointestinal tract mucosa. Digest Dis Sci 2008, 53(6):1437-42.
  • [70]Hansen R, Thomson JM, El-Omar EM, Hold GL: The role of infection in the aetiology of inflammatory bowel disease. J Gastroenterol 2010, 45(3):266-76.
  • [71]Marchiando AM, Shen L, Graham WV, Edelblum KL, Duckworth CA, Guan Y, Montrose MH, Turner JR, Watson AJ: The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 2011, 140(4):1208-18. e1201-1202
  • [72]Watson AJ, Hughes KR: TNF-alpha-induced intestinal epithelial cell shedding: implications for intestinal barrier function. Ann NY Acad Sci 2012, 1258:1-8.
  • [73]Panaro MA, Cianciulli A, Mitolo V, Mitolo CI, Acquafredda A, Brandonisio O, Cavallo P: Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol Med Mic 2007, 51(2):302-9.
  • [74]Lovegrove FE, Gharib SA, Patel SN, Hawkes CA, Kain KC, Liles WC: Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol 2007, 171(6):1894-903.
  • [75]Wyllie AH: “Where, O Death, Is Thy Sting?” A Brief Review of Apoptosis Biology. Mol Neurobiol 2010, 42(1):4-9.
  • [76]Bienvenu A-L, González-Rey E, Picot S: Apoptosis induced by parasitic diseases. Parasite Vector 2010, 3(1):106. BioMed Central Full Text
  • [77]James ER, Green DR: Manipulation of apoptosis in the host parasite interaction. Trends Parasitol 2004, 20(6):280-7.
  • [78]Castellanos-Gonzalez A, Yancey LS, Wang HC, Pantenburg B, Liscum KR, Lewis DE, White AC Jr: Cryptosporidium infection of human intestinal epithelial cells increases expression of osteoprotegerin: a novel mechanism for evasion of host defenses. J Infect Dis 2008, 197(6):916-23.
  • [79]Okunishi K, Dohi M, Nakagome K, Tanaka R, Mizuno S, Matsumoto K, Miyazaki J, Nakamura T, Yamamoto K: A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 2005, 175(7):4745-53.
  • [80]Benkhoucha M, Santiago-Raber M-L, Schneiter G, Chofflon M, Funakoshi H, Nakamura T, Lalive PH: Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25 + Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2010, 107(14):6424-9.
  • [81]Benkhoucha M, Molnarfi N, Schneiter G, Walker P, Lalive P: The neurotrophic hepatocyte growth factor attenuates CD8+ cytotoxic T-lymphocyte activity. J Neuroinflammation 2013, 10(1):154. BioMed Central Full Text
  • [82]Ganz T: Hepcidin and iron regulation, 10 years later. Blood 2011, 117(17):4425-33.
  • [83]Neves JV, Caldas C, Wilson JM, Rodrigues PNS: Molecular mechanisms of hepcidin regulation in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol 2011, 31(6):1154-61.
  • [84]Pereiro P, Figueras A, Novoa B: A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol 2012, 32(5):879-89.
  • [85]Ganz T: The role of hepcidin in iron sequestration during infections and in the pathogenesis of anemia of chronic disease. Isr Med Assoc J 2002, 4(11):1043-5.
  • [86]Tizard IR: Veterinary Immunology: An Introduction, 8th Edition. India: CBS Publishers & Distributors; 2009.
  • [87]Estensoro I, Benedito-Palos L, Palenzuela O, Kaushik S, Sitjà-Bobadilla A, Pérez-Sánchez J: The nutritional background of the host alters the disease course in a fish–myxosporean system. Vet Parasitol 2011, 175(1–2):141-50.
  • [88]Salem M, Silverstein J, Rexroad CE 3rd, Yao J: Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2007, 8:328. BioMed Central Full Text
  • [89]Pérez-Jiménez A, Cardenete G, Hidalgo MC, García-Alcázar A, Abellán E, Morales AE: Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish Physiol Biochem 2012, 38(4):1145-57.
  • [90]Antonopoulou E, Kentepozidou E, Feidantsis K, Roufidou C, Despoti S, Chatzifotis S: Starvation and re-feeding affect Hsp expression, MAPK activation and antioxidant enzymes activity of European Sea Bass (Dicentrarchus labrax). Comp Biochem Phys A 2013, 165(1):79-88.
  • [91]Hayes J, Volkoff H: Characterization of the endocrine, digestive and morphological adjustments of the intestine in response to food deprivation and torpor in cunner, Tautogolabrus adspersus. Comp Biochem Phys A 2014, 170:46-59.
  • [92]Kyriazakis I, Tolkamp BJ, Hutchings MR: Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim Behav 1998, 56(2):265-74.
  • [93]Barber I: Parasites, behaviour and welfare in fish. Appl Anim Behav Sci 2007, 104(3–4):251-64.
  • [94]Colditz IG: Six costs of immunity to gastrointestinal nematode infections. Parasite Immunol 2008, 30(2):63-70.
  • [95]Wykes LJ, Fiorotto M, Burrin DG, Del Rosario M, Frazer ME, Pond WG, Jahoor F: Chronic low protein intake reduces tissue protein synthesis in a pig model of protein malnutrition. J Nutr 1996, 126(5):1481-8.
  • [96]Lenaerts K, Sokolovic M, Bouwman FG, Lamers WH, Mariman EC, Renes J: Starvation induces phase-specific changes in the proteome of mouse small intestine. J Proteome Res 2006, 5(9):2113-22.
  • [97]Redondo MJ, Palenzuela O, Riaza A, Macias A, Álvarez-Pellitero P: Experimental transmission of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. J Parasitol 2002, 88(3):482-8.
  • [98]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012, 40(W1):W622-7.
  • [99]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14(4):R36. BioMed Central Full Text
  • [100]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Meth 2012, 9(4):357-9.
  • [101]Robinson M, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25. BioMed Central Full Text
  • [102]Suzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22:1540-2.
  • [103]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization data repository. Nucleic Acids Res 2002, 30(1):207-10.
  文献评价指标  
  下载次数:65次 浏览次数:23次