期刊论文详细信息
BMC Molecular Biology
Downregulation of microRNA-100 protects apoptosis and promotes neuronal growth in retinal ganglion cells
Bin Li1  Xiaohe Lu2  Ning Kong1 
[1] Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou 510280, Guangdong Province, China;Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
关键词: IGF-1;    Apoptosis;    Oxidative stress;    miR-100;    Retinal ganglion;   
Others  :  1090203
DOI  :  10.1186/s12867-014-0025-1
 received in 2014-08-03, accepted in 2014-10-22,  发布年份 2014
PDF
【 摘 要 】

Background

Retinal ganglion cells (RGCs) are preferentially lost in glaucoma or optic neuritis. In the present study, we investigated the protective effect of mircoRNA 100 (miR-100) against oxidative stress induced apoptosis in RGC-5 cells.

Results

Rat RGC-5 cells were cultured in plates and H2O2 was added to induce oxidative stress. TUNEL assay and qRT-PCR showed H2O2 induced apoptosis and up-regulated miR-100 in a dose-dependent manner in RGC-5 cells. Conversely, lentiviral-mediated miR-100 down-regulation protected H2O2 induced apoptosis, promoted neurite growth and activated AKT/ERK and TrkB pathways through phosphorylation. Luciferase assay confirmed that IGF1R was directly regulated by miR-100 in RGC-5 cells, and siRNA-mediated IGF1R knockdown activated AKT protein through phosphorylation, down-regulated miR-100, therefore exerted a protective effect on RGC-5 apoptosis.

Conclusion

Down-regulating miR-100 is an effective method to protect H2O2 induced apoptosis in RGC-5 cells, possible associated with IGF1R regulation.

【 授权许可】

   
2014 Kong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128154859804.pdf 1632KB PDF download
Figure 5. 38KB Image download
Figure 4. 32KB Image download
Figure 3. 59KB Image download
Figure 2. 55KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A: The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012, 31(2):152-181.
  • [2]Tezel G: Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006, 25(5):490-513.
  • [3]Arjamaa O, Nikinmaa M: Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 2006, 83(3):473-483.
  • [4]Casson RJ: Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin Experiment Ophthalmol 2006, 34(1):54-63.
  • [5]Kanamori A, Nakamura M, Nakanishi Y, Nagai A, Mukuno H, Yamada Y, Negi A: Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res 2004, 1022(1–2):195-204.
  • [6]Kermer P, Klocker N, Labes M, Bahr M: Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 2000, 20(2):2-8.
  • [7]Averbukh E, Weiss O, Halpert M, Yanko R, Moshe R, Nephesh I, Flyvbjerg A, Yanko L, Raz I: Gene expression of insulin-like growth factor-I, its receptor and binding proteins in retina under hypoxic conditions. Metab Clin Exp 1998, 47(11):1331-1336.
  • [8]Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y: IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421(6919):182-187.
  • [9]Klocker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M: Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 2000, 20(18):6962-6967.
  • [10]Kilic U, Kilic E, Jarve A, Guo Z, Spudich A, Bieber K, Barzena U, Bassetti CL, Marti HH, Hermann DM: Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. J Neurosci 2006, 26(48):12439-12446.
  • [11]Tong M, Brugeaud A, Edge AS: Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol 2013, 14(3):321-329.
  • [12]Koeberle PD, Tura A, Tassew NG, Schlichter LC, Monnier PP: The repulsive guidance molecule, RGMa, promotes retinal ganglion cell survival in vitro and in vivo. Neuroscience 2010, 169(1):495-504.
  • [13]Brugeaud A, Tong M, Luo L, Edge AS: Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells. Dev Neurobiol 2014, 74(4):457-466.
  • [14]Pernet V, Schwab ME: Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci 2014, 37(7):381-387.
  • [15]Pillai RS: MicroRNA function: multiple mechanisms for a tiny RNA? RNA 2005, 11(12):1753-1761.
  • [16]Lumayag S, Haldin CE, Corbett NJ, Wahlin KJ, Cowan C, Turturro S, Larsen PE, Kovacs B, Witmer PD, Valle D, Zack DJ, Nicholson DA, Xu S: Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 2013, 110(6):E507-E516.
  • [17]Zhu Q, Sun W, Okano K, Chen Y, Zhang N, Maeda T, Palczewski K: Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina. J Biol Chem 2011, 286(36):31749-31760.
  • [18]Remenyi J, van den Bosch MW, Palygin O, Mistry RB, McKenzie C, Macdonald A, Hutvagner G, Arthur JS, Frenguelli BG, Pankratov Y: miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity.PLoS One 2013, 8(4):e62509.
  • [19]Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y, Irie S, Uneo S, Koyasu T, Matsui R, Cherasse Y, Urade Y, Watanabe D, Kondo M, Yamashita T, Furukawa T: miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 2011, 14(9):1125-1134.
  • [20]Small EM, Sutherland LB, Rajagopalan KN, Wang S, Olson EN: MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ Res 2010, 107(11):1336-1344.
  • [21]Marler KJ, Suetterlin P, Dopplapudi A, Rubikaite A, Adnan J, Maiorano NA, Lowe AS, Thompson ID, Pathania M, Bordey A, Fulga T, Van Vactor DL, Hindges R, Drescher U: BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP. J Neurosci 2014, 34(3):969-979.
  • [22]Loscher CJ, Hokamp K, Wilson JH, Li T, Humphries P, Farrar GJ, Palfi A: A common microRNA signature in mouse models of retinal degeneration. Exp Eye Res 2008, 87(6):529-534.
  • [23]Loscher CJ, Hokamp K, Kenna PF, Ivens AC, Humphries P, Palfi A, Farrar GJ: Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa.Genome Biol 2007, 8(11):R248.
  • [24]Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM, Anderson ML, Matzuk MM: A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010, 24(2):447-463.
  • [25]Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, O'Sullivan B, Liu FF: Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer 2010, 126(9):2036-2048.
  • [26]Kovacs B, Lumayag S, Cowan C, Xu S: MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2011, 52(7):4402-4409.
  • [27]Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A, Antunes AA, Srougi M: Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 2011, 29(3):265-269.
  • [28]Hackler L Jr, Wan J, Swaroop A, Qian J, Zack DJ: MicroRNA profile of the developing mouse retina. Invest Ophthalmol Vis Sci 2010, 51(4):1823-1831.
  • [29]Rohrer B, Korenbrot JI, LaVail MM, Reichardt LF, Xu B: Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci 1999, 19(20):8919-8930.
  文献评价指标  
  下载次数:49次 浏览次数:10次