期刊论文详细信息
BMC Genetics
A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments
Junming Li2  Jun Ji2  Mei Chen1  Wei Zhang2  Chunhua Zhao2  Xiaoli Fan1  Fa Cui2 
[1] University of Chinese Academy of Sciences, Beijing 10049, China;State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
关键词: Yield;    Wheat;    Quantitative trait loci;    Molecular marker;    Genetic map;   
Others  :  866255
DOI  :  10.1186/1471-2156-15-57
 received in 2014-04-01, accepted in 2014-05-09,  发布年份 2014
PDF
【 摘 要 】

Background

Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat varieties that maintain yield (YD) under moderate or even intense nitrogen (N) deficiency can adapt to low input management systems. A detailed genetic map is necessary for both wheat molecular breeding and genomics research. In this study, an F6:7 recombinant inbred line population comprising 188 lines was used to construct a novel genetic map and subsequently to detect quantitative trait loci (QTL) for YD and response to N stress.

Results

A genetic map consisting of 591 loci distributed across 21 wheat chromosomes was constructed. The map spanned 3930.7 cM, with one marker per 6.7 cM on average. Genomic simple sequence repeat (g-SSR), expressed sequence tag-derived microsatellite (e-SSR), diversity arrays technology (DArT), sequence-tagged sites (STS), sequence-related amplified polymorphism (SRAP), and inter-simple sequence repeat (ISSR) molecular markers were included in the map. The linear relationships between loci found in the present map and in previously compiled physical maps were presented, which were generally in accordance. Information on the genetic and physical positions and allele sizes (when possible) of 17 DArT, 50 e-SSR, 44 SRAP, five ISSR, and two morphological markers is reported here for the first time. Seven segregation distortion regions (SDR) were identified on chromosomes 1B, 3BL, 4AL, 6AS, 6AL, 6BL, and 7B. A total of 22 and 12 QTLs for YD and yield difference between the value (YDDV) under HN and the value under LN were identified, respectively. Of these, QYd-4B-2 and QYddv-4B, two major stable QTL, shared support interval with alleles from KN9204 increasing YD in LN and decreasing YDDV. We probe into the use of these QTLs in wheat breeding programs. Moreover, factors affecting the SDR and total map length are discussed in depth.

Conclusions

This novel map may facilitate the use of novel markers in wheat molecular breeding programs and genomics research. Moreover, QTLs for YD and YDDV provide useful markers for wheat molecular breeding programs designed to increase yield potential under N stress.

【 授权许可】

   
2014 Cui et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727050629119.pdf 2210KB PDF download
125KB Image download
225KB Image download
【 图 表 】

【 参考文献 】
  • [1]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, et al.: The Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013, 496:91-95.
  • [2]Ling H, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, et al.: Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 2013, 496:87-90.
  • [3]Röder MS, Korzum V, Gill BS, Ganal MW: The physical mapping of microsatellite markers in wheat. Genome 1998, 41:278-283.
  • [4]Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME: Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 2004, 47:805-818.
  • [5]Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH: A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 2007, 20:167-178.
  • [6]Chabane K, Varshney RK, Graner A, Valkoun J: Generation and exploitation of EST-derived SSR markers for assaying molecular diversity in durum wheat populations. Genet Resour Crop Evol 2008, 55:869-881.
  • [7]Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ: One hundred and one new microsatellite loci derived from ESTs (E-SSR) in bread wheat. Theor Appl Genet 2004, 108:1392-1400.
  • [8]Zietkiewicz E, Rafalski A, Labuda D: Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20:176-183.
  • [9]Nagaoka T, Ogihara Y: Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 1997, 94:597-602.
  • [10]Li G, Quiros CF: Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 2001, 103:455-461.
  • [11]Aneja B, Yadav NR, Chawla V, Yadav RC: Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol Breed 2012, 30:1635-1648.
  • [12]Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A: Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 2006, 113:1409-1420.
  • [13]Semagn K, Bjørnstad A, Skinnes H, Marøy AG, Tarkegne Y, William M: Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double haploid hexaploid wheat population. Genome 2006, 49:545-555.
  • [14]Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, Ambrogio ED, Kilian A: An integrated DArT-SSR linkage map of durum wheat. Mol Breed 2008, 22:629-648.
  • [15]Peleg Z, Saranga Y, Suprunova T, Ronin YW, Röder MS, Kilian A, Korol AB, Fahima T: High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 2008, 117:103-115.
  • [16]Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R: Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 2009, 281:181-191.
  • [17]Wang YY, Sun XY, Zhao Y, Kong FM, Guo Y, Zhang GZ, Pu YY, Wu K, Li SS: Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci 2011, 181:65-75.
  • [18]Huang BE, Cavanagh C, Rampling L, Kilian A, Geroge A: iDArTs: increasing the value of genomic resources at no cost. Mol Breed 2012, 30:927-938.
  • [19]Cui F, Zhao CH, Ding AM, Li J, Wang L, Li XF, Bao YG, Li JM, Wang HG: Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 2014, 127:659-675.
  • [20]Habash DZ, Bernard S, Schondelmaier JS, Weyen J, Quarrie SA: The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 2007, 114:403-419.
  • [21]Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret FD, Gouis JL: Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 2007, 115:399-415.
  • [22]Laperche A, Gouis JL, Hanocq E, Brancourt-Hulmel M: Modelling nitrogen stress with probe genotypes to assess genetic parameters and genetic determinism of winter wheat tolerance to nitrogen constraint. Ephytica 2008, 161:259-271.
  • [23]Cui ZL, Zhang FS, Chen XP, Li F, Tong YP: Using in-season nitrogen management and wheat cultivars to improve nitrogen use efficiency. Soil Sci Soc Am J 2011, 75:1-8.
  • [24]Wang RF, An DG, Hu CS, Li LH, Zhang YM, Jia YG, Tong YP: Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain. Crop Pasture Sci 2011, 62:504-514.
  • [25]Peng JH, Lapitan NLV: Characterization of EST-derived microsatellites in the wheat genome and development of Essr markers. Funct Integr Genomic 2005, 5:80-96.
  • [26]Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG: EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 2005, 48:811-822.
  • [27]Zhuang LF, Song LX, Feng YG, Qian BL, Xu HB, Pei ZY, Qi ZJ: Development and chromosome mapping of 81 New wheat E-SSR markers and application for characterizing Rye chromosomes added in wheat. Acta Agron Sin 2008, 34(6):926-933.
  • [28]Li LZ, Wang JJ, Guo Y, Jiang FS, Xu YF, Wang YY, Pan HT, Han GZ, Li RJ, Li SS: Development of SSR markers from ESTs of gramineous speciesand their chromosome location on wheat. Prog Nat Sci 2008, 18:1485-1490.
  • [29]Yang XQ, Liu P, Han ZF, Ni ZF, Liu WQ, Sun QX: Comparative analysis of genetic diversity revealed by genomic-SSR, E-SSR and pedigree in wheat (Triticum asetivum L.). Acta Genet Sin 2005, 32(4):406-416.
  • [30]Lu JF, Ren ZL, Gao LF, Jia JZ: Developing new SSR markers from EST of wheat. Acta Agron Sin 2005, 31(2):154-158.
  • [31]Liu YN, He ZH, Appels R, Xia XC: Functional markers in wheat: current status and future prospects. Theor Appl Genet 2012, 125:1-10.
  • [32]Hao YF, Liu AF, Wang YH, Feng DS, Gao JR, Li XF, Liu SB, Wang HG: Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 2008, 117:1205-1212.
  • [33]Singh NK, Shepherd KW, Cornish GB: A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci 1991, 14:203-208.
  • [34]Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1987, 1:174-181.
  • [35]Kosambi DD: The estimation of map distances from recombination values. Ann Eugen 1994, 12:172-175.
  • [36]Voorips RE: Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 2002, 93:77-78.
  • [37]Sourdille P, Singh S, Cadalen T, Gina L, Brown-Guedira GL, Gay G, Qi LL, Gill BS, Dufour P, Murigneux A, Bernard M: Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomic 2004, 4:12-25.
  • [38]Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M: An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 2003, 106:530-538.
  • [39]Röder MS, Korzun V, Wendehake K, Tixier MH, Leroy P, Ganal MW: A microsatellite map of wheat. Genetics 1998, 149:2007-2023.
  • [40]Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB: Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 2005, 110:550-560.
  • [41]Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A: Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. Theor Appl Genet 2009, 118:1015-1025.
  • [42]Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, Vita PD, Cattivelli L, Papa R, Blanco A, Mastrangelo AM: A high-density consensus map of A and B wheat genomes. Theor Appl Genet 2012, 106:1619-1638.
  • [43]Somers DJ, Isaac P, Edwards K: A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 2004, 109:1105-1114.
  • [44]Nachit MM, Elouafi I, Pagnotta MA, EI SA, Lacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J-M, Tanzarella OA, Porceddu E, Sorrells ME: Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 2001, 102:177-186.
  • [45]Lagudah ES, Appels R, Brown AHD, McNeil D: The molecular-genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 1991, 34:375-386.
  • [46]Torada A, Koike M, Mochida K, Ogihara Y: SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 2006, 112:1042-1051.
  • [47]Kantety RV, La Rota M, Matthews DE, Sorrells ME: Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 2002, 48:501-510.
  • [48]Zhang KP, Zhao L, Tian JC, Chen GF, Jiang XL, Liu B: A genetic map constructed using a doubled haploid population derived from two elite Chinese common Wheat varieties. J Integr Plant Biol 2008, 50:941-950.
  • [49]Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA: A genetic linkage map of durum wheat. Theor Appl Genet 1998, 97:721-728.
  • [50]Sears ER: The aneuploids of common wheat. Missouri Agric Exp Sta Res Bull 1954, 572:59.
  • [51]Jha KK: The association of a gene for purple coleoptile with chromosome 7D of common wheat. Can J Genet Cytol 1964, 6:370-372.
  • [52]Kuspira J, Unrau J: Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. Can J Plant Sci 1958, 38:199-205.
  • [53]Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G: An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 2003, 107:1235-1242.
  • [54]Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao S, Anderson OD, David J, Qi L, Echalier B, Gill BS, Miftahudin , Gustafson JP, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NL, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, et al.: Synteny perturbations between wheat homeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci U S A 2003, 100:10836-10841.
  • [55]Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin , Gustafson JP, Lazo G, Chao S, Anderson OD, Linkiewicz AM, Dubcovsky J, Rota ML, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NLV, Gonzalez-Hernandez J, Anderson JA, Choi D-W, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, et al.: The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 2003, 13:753-763.
  • [56]Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin , Gustafson JP, Conley EJ, et al.: A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploidy wheat. Genetics 2004, 168:701-712.
  • [57]Zhang L, Luo JT, Hao M, Zhang LQ, Yuan ZW, Yan ZH, Liu YX, Zhang B, Liu BL, Liu CJ, Zhang HG, Zheng YL, Liu DC: Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genet 2012, 13:69. doi:10.1186/1471-2156-13-69
  • [58]Lyttle TW: Segregation distorters. Annu Rev Genet 1991, 25:511-557.
  • [59]Xu Y, Zhu L, Xiao J, Huang N, McCouch SR: Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativaL.). Mol Gen Genet 1997, 253:535-545.
  • [60]Tanksley SD: Linkage relationships and chromosomal locations of enzyme-coding genes in pepper, Capsicum annum. Chromosoma 1984, 89:352-360.
  • [61]Chu CG, Xu SS, Friesen TL, Faris JD: Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 2008, 22:251-266.
  • [62]Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T: Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 2011, 12:380. BioMed Central Full Text
  • [63]Suenaga K, Khairallah M, William HM, Hoisington DA: A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 2005, 48:65-75.
  文献评价指标  
  下载次数:29次 浏览次数:28次