期刊论文详细信息
BMC Complementary and Alternative Medicine
Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus
Chih-Jui Chang2  Meng-Ya Chang5  Chin-Fung Wan3  Chinpiao Chen4  Yann-Lii Leu1  Ming-Yeh Yang2  Yi-Jen Hsieh4 
[1] Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan;Department of Molecular Biology and Human Genetics, Tzu Chi University, No. 701, Zhongyang Rd., Sec. 3, Hualien, 97004, Taiwan;Institute of NanoEngineering and MicroSystems, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan;Department of Chemistry, National Dong-Hwa University, Hualien, Taiwan;Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
关键词: Anti-proliferation;    Multipolar spindle;    Kalanchoe tubiflora;   
Others  :  1232019
DOI  :  10.1186/1472-6882-12-149
 received in 2012-03-26, accepted in 2012-08-31,  发布年份 2012
PDF
【 摘 要 】

Background

Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored.

Methods

Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images.

Results

An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase.

Conclusion

KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

【 授权许可】

   
2012 Hsieh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151112073618307.pdf 2900KB PDF download
Figure 7. 100KB Image download
Figure 6. 51KB Image download
Figure 5. 52KB Image download
Figure 4. 77KB Image download
Figure 3. 103KB Image download
Figure 2. 64KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bettencourt-Dias M, Glover DM: Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 2007, 8:451-463.
  • [2]O’Connell CB, Khodjakov AL: Cooperative mechanisms of mitotic spindle formation. J Cell Sci 2007, 120:1717-1722.
  • [3]Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng Y: A ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 2003, 5:242-248.
  • [4]Rieder CL, Maiato H: Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004, 7:637-651.
  • [5]Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H: The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 2004, 118:187-202.
  • [6]Maresca TJ, Salmon ED: Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 2009, 184:373-381.
  • [7]Pajk B, Cufer T, Canney P, Ellis P, Cameron D, Blot E, Vermorken J, Coleman R, Marreaud S, Bogaerts J, et al.: Anti-tumor activity of capecitabine and vinorelbine in patients with anthracycline- and taxane-pretreated metastatic breast cancer: findings from the EORTC 10001 randomized phase II trial. Breast 2008, 17:180-185.
  • [8]Norris B, Pritchard KI, James K, Myles J, Bennett K, Marlin S, Skillings J, Findlay B, Vandenberg T, Goss P, et al.: Phase III comparative study of vinorelbine combined with doxorubicin versus doxorubicin alone in disseminated metastatic/recurrent breast cancer: national cancer institute of Canada clinical trials group study MA8. J Clin Oncol 2000, 18:2385-2394.
  • [9]Dimitroulis J, Stathopoulos GP: Evolution of non-small cell lung cancer chemotherapy (Review). Oncol Rep 2005, 13:923-930.
  • [10]Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M: Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 2003, 14:1607-1615.
  • [11]Schiff PB, Fant J, Horwitz SB: Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277:665-667.
  • [12]Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT: Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from taxus brevifolia. J Am Chem Soc 1971, 93:2325-2327.
  • [13]Dumontet C, Jordan MA: Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010, 9:790-803.
  • [14]Kavallaris M: Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010, 10:194-204.
  • [15]Brito DA, Rieder CL: The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil Cytoskeleton 2009, 66:437-447.
  • [16]Canta A, Chiorazzi A, Cavaletti G: Tubulin: a target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr Med Chem 2009, 16:1315-1324.
  • [17]Sudakin V, Yen TJ: Targeting mitosis for anti-cancer therapy. BioDrugs 2007, 21:225-233.
  • [18]Taylor S, Peters JM: Polo and Aurora kinases: lessons derived from chemical biology. Curr Opin Cell Biol 2008, 20:77-84.
  • [19]Sawin KE, Mitchison TJ: Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc Natl Acad Sci USA 1995, 92:4289-4293.
  • [20]Tanenbaum ME, Macurek L, Galjart N, Medema RH: Dynein, Lis1 and CLIP-170 counteract eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J 2008, 27:3235-3245.
  • [21]Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M, Medema RH: Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 2009, 19:1703-1711.
  • [22]Carmena M, Earnshaw WC: The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003, 4:842-854.
  • [23]Carmena M, Ruchaud S, Earnshaw WC: Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 2009, 21:796-805.
  • [24]Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H: Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 2003, 278:51786-51795.
  • [25]Ruchaud S, Carmena M, Earnshaw WC: Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 2007, 8:798-812.
  • [26]Barr AR, Gergely F: Aurora-A: the maker and breaker of spindle poles. J Cell Sci 2007, 120:2987-2996.
  • [27]Vader G, Lens SM: The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 2008, 1786:60-72.
  • [28]Vader G, Maia AF, Lens SM: The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Div 2008, 3:10. BioMed Central Full Text
  • [29]Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC: Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 2004, 166:179-191.
  • [30]Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W: Aurora kinase inhibitors–rising stars in cancer therapeutics? Mol Cancer Ther 2010, 9:268-278.
  • [31]Ryan BM, O’Donovan N, Duffy MJ: Survivin: a new target for anti-cancer therapy. Cancer Treat Rev 2009, 35:553-562.
  • [32]Adams RR, Maiato H, Earnshaw WC, Carmena M: Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 2001, 153:865-880.
  • [33]Heyne K, The Useful Indonesian Plants: Research and Development Agency. Jakarta: Ministry of Forestry; 1987:845-846.
  • [34]Sjamsu Hidayat SS, Hutapea JR: Indonesian Medicinal Plants (I): Research and Development Agency. Jakarta: Ministry of Health; 1991:220-221.
  • [35]Supratman U, Fujita T, Akiyama K, Hayashi H: Insecticidal compounds from Kalanchoe daigremontiana x tubiflora. Phytochemistry 2001, 58:311-314.
  • [36]Lans CA: Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2006, 2:45. BioMed Central Full Text
  • [37]Mathew PJ, Unnithan CM: Search for plants having anti-cancer properties used by the tribals of Wynadu, Mallappuram and Palghat districts of Kerala. India Aryavaidyan 1992, 6:54-60.
  • [38]Lai ZR, Ho YL, Huang SC, Huang TH, Lai SC, Tsai JC, Wang CY, Huang GJ, Chang YS: Antioxidant, anti-inflammatory and antiproliferative activities of Kalanchoe gracilis (L.) DC stem. Am J Chin Med 2011, 39:1275-1290.
  • [39]Yamagishi T, Haruna M, Yan XZ, Chang JJ, Lee KH: Antitumor agents, 110. Bryophyllin B, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. J Nat Prod 1989, 52:1071-1079.
  • [40]Costa SS, Jossang A, Bodo B, Souza ML, Moraes VL: Patuletin acetylrhamnosides from Kalanchoe brasiliensis as inhibitors of human lymphocyte proliferative activity. J Nat Prod 1994, 57:1503-1510.
  • [41]Wu PL, Hsu YL, Wu TS, Bastow KF, Lee KH: Kalanchosides A-C, new cytotoxic bufadienolides from the aerial parts of Kalanchoe gracilis. Org Lett 2006, 8:5207-5210.
  • [42]Kuo P, Kuo T, Su C, Liou M, Wu T: Cytotoxic principles and a-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron 2008, 64:3392-3396.
  • [43]Supratman U, Fujita T, Akiyama K, Hayashi H, Murakami A, Sakai H, Koshimizu K, Ohigashi H: Anti-tumor promoting activity of bufadienolides from Kalanchoe pinnata and K. daigremontiana x tubiflora. Biosci Biotechnol Biochem 2001, 65:947-949.
  • [44]Schmidt C, Fronza M, Goettert M, Geller F, Luik S, Flores EM, Bittencourt CF, Zanetti GD, Heinzmann BM, Laufer S, Merfort I: Biological studies on Brazilian plants used in wound healing. J Ethnopharmacol 2009, 122:523-532.
  • [45]Cragg GM, Newman DJ: Plants as a source of anti-cancer agents. J Ethnopharmacol 2005, 100:72-79.
  • [46]Tang YQ, Jaganath IB, Sekaran SD: Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS One 2010, 5:e12644.
  • [47]Ganguly A, Yang H, Cabral F: Paclitaxel-dependent cell lines reveal a novel drug activity. Mol Cancer Ther 2010, 9:2914-2923.
  • [48]Jordan MA, Toso RJ, Thrower D, Wilson L: Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 1993, 90:9552-9556.
  • [49]Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, et al.: NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 2007, 27:352-367.
  • [50]Wittmann T, Wilm M, Karsenti E, Vernos I: TPX2, a novel xenopus MAP involved in spindle pole organization. J Cell Biol 2000, 149:1405-1418.
  • [51]Garrett S, Auer K, Compton DA, Kapoor TM: HTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol 2002, 12:2055-2059.
  • [52]Biggins S, Murray AW: The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 2001, 15:3118-3129.
  • [53]Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM: Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 2004, 6:232-237.
  • [54]Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A: The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
  • [55]Petronczki M, Lenart P, Peters JM: Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell 2008, 14:646-659.
  • [56]Archambault V, Glover DM: Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009, 10:265-275.
  • [57]Macurek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH: Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008, 455:119-123.
  • [58]Seki A, Coppinger JA, Jang CY, Yates JR, Fang G: Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008, 320:1655-1658.
  • [59]Carmena M, Pinson X, Platani M, Salloum Z, Xu Z, Clark A, Macisaac F, Ogawa H, Eggert U, Glover DM, et al.: The chromosomal passenger complex activates polo kinase at centromeres. PLoS Biol 2012, 10:e1001250.
  • [60]McEwen BF, Chan GK, Zubrowski B, Savoian MS, Sauer MT, Yen TJ: CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell 2001, 12:2776-2789.
  • [61]Mao Y, Abrieu A, Cleveland DW: Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 2003, 114:87-98.
  • [62]Wood KW, Lad L, Luo L, Qian X, Knight SD, Nevins N, Brejc K, Sutton D, Gilmartin AG, Chua PR, et al.: Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci USA 2010, 107:5839-5844.
  • [63]Winey M, Goetsch L, Baum P, Byers B: MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 1991, 114:745-754.
  • [64]Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbe JC: Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001, 106:83-93.
  • [65]Lan W, Cleveland DW: A chemical tool box defines mitotic and interphase roles for Mps1 kinase. J Cell Biol 2010, 190:21-24.
  • [66]Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M, Choi HG, Sim T, Deveraux QL, Rottmann S, et al.: Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 2010, 6:359-368.
  • [67]Ganem NJ, Godinho SA, Pellman D: A mechanism linking extra centrosomes to chromosomal instability. Nature 2009, 460:278-282.
  文献评价指标  
  下载次数:0次 浏览次数:2次