期刊论文详细信息
BMC Genetics
Determining immune components necessary for progression of pigment dispersing disease to glaucoma in DBA/2J mice
Simon WM John2  Sharmila Masli1  Richard S Smith4  Jessica Barbay4  K Saidas Nair3 
[1] Department of Ophthalmology, Boston University, Boston, MA, USA;Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA;Department of Ophthalmology, University of California, San Francisco, CA, USA;Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
关键词: Intraocular pressure;    Iris disease;    ACAID;    NK cells;    CD94;    DBA/2J;    Mouse model;    Pigmentary glaucoma;    Glaucoma;   
Others  :  866265
DOI  :  10.1186/1471-2156-15-42
 received in 2013-12-18, accepted in 2014-03-06,  发布年份 2014
PDF
【 摘 要 】

Background

The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1b and GpnmbR150X) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation. Here, we tested the role of specific immune components in the progression of the iris disease and high IOP.

Results

We tested the role of NK cells in disease etiology by genetically modifying the B6.D2-GpnmbR150XTyrp1b strain, which develops the same iris disease as DBA/2J mice. Our findings demonstrate that neither diminishing NK mediated cytotoxic activity (Prf1 mutation) nor NK cell depletion (Il2rg mutation) has any influence on the severity or timing of GpnmbR150XTyrp1b mediated iris disease. Since DBA/2J mice are deficient in CD94, an important immune modulator that often acts as an immune suppressor, we generated DBA/2J mice sufficient in CD94. Sufficiency of CD94 failed to alter either the iris disease or the subsequent IOP elevation. Additionally CD94 status had no detected effect on glaucomatous optic nerve damage.

Conclusion

Our previous data implicate immune components in the manifestation of pigment dispersion and/or IOP elevation in DBA/2J mice. The current study eliminates important immune components, specifically NK cells and CD94 deficiency, as critical in the progression of iris disease and glaucoma. This narrows the field of possible immune components responsible for disease progression.

【 授权许可】

   
2014 Nair et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727051852659.pdf 1439KB PDF download
188KB Image download
102KB Image download
145KB Image download
46KB Image download
62KB Image download
141KB Image download
135KB Image download
【 图 表 】

【 参考文献 】
  • [1]Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA: The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002, 120(6):714-720.
  • [2]Ball SF: Pigmentary Glaucoma. In Ophthalmology. Edited by Yanoff M, Duker JS. St. Louise: Mosby; 2004:1504-1507.
  • [3]Ritch R: A unification hypothesis of pigment dispersion syndrome. Trans Am Ophthalmol Soc 1996, 94:381-405.
  • [4]Farrar SM, Shields MB, Miller KN, Stoup CM: Risk factors for the development and severity of glaucoma in the pigment dispersion syndrome. Am J Ophthalmol 1989, 108(3):223-229.
  • [5]Migliazzo CV, Shaffer RN, Nykin R, Magee S: Long-term analysis of pigmentary dispersion syndrome and pigmentary glaucoma. Ophthalmology 1986, 93(12):1528-1536.
  • [6]Richter CU, Richardson TM, Grant WM: Pigmentary dispersion syndrome and pigmentary glaucoma. A prospective study of the natural history. Arch Ophthalmol 1986, 104(2):211-215.
  • [7]Scheie HG, Cameron JD: Pigment dispersion syndrome: a clinical study. Br J Ophthalmol 1981, 65(4):264-269.
  • [8]Siddiqui Y, Ten Hulzen RD, Cameron JD, Hodge DO, Johnson DH: What is the risk of developing pigmentary glaucoma from pigment dispersion syndrome? Am J Ophthalmol 2003, 135(6):794-799.
  • [9]Bayer AU, Neuhardt T, May AC, Martus P, Maag KP, Brodie S, Lutjen-Drecoll E, Podos SM, Mittag T: Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Invest Ophthalmol Vis Sci 2001, 42(6):1258-1265.
  • [10]John SWM, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR: Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 1998, 39(6):951-962.
  • [11]Libby RT, Anderson MG, Pang I-H, Savinova OV, Cosma IM, Snow A, Wilson LA, Clark AF, Smith RS, John SWM: Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 2005, 22(5):637-648.
  • [12]Sheldon WG, Warbritton AR, Bucci TJ, Turturro A: Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. Lab Anim Sci 1995, 45:508-518.
  • [13]Chang B, Smith RS, Hawes NL, Anderson MG, Zabaleta A, Savinova O, Roderick TH, Heckenlively JR, Davisson MT, John SWM: Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 1999, 21:405-409.
  • [14]Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SWM: Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 2002, 30:81-85.
  • [15]Le Borgne R, Planque N, Martin P, Dewitte F, Saule S, Hoflack B: The AP-3-dependent targeting of the melanosomal glycoprotein QNR-71 requires a di-leucine-based sorting signal. J Cell Sci 2001, 114(Pt 15):2831-2841.
  • [16]Shikano S, Bonkobara M, Zukas PK, Ariizumi K: Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem 2001, 276(11):8125-8134.
  • [17]Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA: Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol 2007, 178(10):6557-6566.
  • [18]Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron JC, Hearing VJ: Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 1994, 13(24):5818-5825.
  • [19]Kobayashi T, Imokawa G, Bennett DC, Hearing VJ: Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem 1998, 273(48):31801-31805.
  • [20]Kobayashi T, Urabe K, Winder A, Tsukamoto K, Brewington T, Imokawa G, Potterf B, Hearing VJ: DHICA oxidase activity of TRP1 and interactions with other melanogenic enzymes. Pigment Cell Res 1994, 7(4):227-234.
  • [21]Mo JS, Anderson MG, Gregory M, Smith RS, Savinova OV, Serreze DV, Ksander BR, Streilein JW, John SWM: By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J Exp Med 2003, 197(10):1335-1344.
  • [22]Anderson MG, Nair KS, Amonoo LA, Mehalow A, Trantow CM, Masli S, John SW: GpnmbR150X allele must be present in bone marrow derived cells to mediate DBA/2J glaucoma. BMC Genet 2008, 9:30.
  • [23]Bora NS, Woon MD, Tandhasetti MT, Cirrito TP, Kaplan HJ: Induction of experimental autoimmune anterior uveitis by a self-antigen: melanin complex without adjuvant. Invest Ophthalmol Vis Sci 1997, 38:2171-2175.
  • [24]Schleinitz N, Vély F, Harlé JR, Vivier E: Natural killer cells in human autoimmune diseases. Immunology 2010, 131(4):451-458.
  • [25]Vance RE, Jamieson AM, Cado D, Raulet DH: Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation. Proc Natl Acad Sci USA 2002, 99(2):868-873.
  • [26]Chattopadhyay S, O’Rourke J, Cone RE: Implication for the CD94/NKG2A-Qa-1 system in the generation and function of ocular-induced splenic CD8+ regulatory T cells. Int Immunol 2008, 20(4):509-516.
  • [27]Gunturi A, Berg RE, Forman J: The role of CD94/NKG2 in innate and adaptive immunity. Immunol Res 2004, 30(1):29-34.
  • [28]Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE: The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2006, 35(3):263-278.
  • [29]Jensen PE, Sullivan BA, Reed-Loisel LM, Weber DA: Qa-1, a nonclassical class I histocompatibility molecule with roles in innate and adaptive immunity. Immunol Res 2004, 29(1–3):81-92.
  • [30]Kim CY, Masli S, Streilein JW: Qa-1, a nonclassical MHC molecule with immunomodulatory functions, is ubiquitously expressed in the immune-privileged anterior chamber of the eye. Ocul Immunol Inflamm 2005, 13(4):271-277.
  • [31]Anderson MG, Libby RT, Mao M, Cosma IM, Wilson LA, Smith RS, John SW: Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol 2006, 4:20. BioMed Central Full Text
  • [32]Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H: Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994, 369(6475):31-37.
  • [33]Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, Paul WE, Katz SI, Love PE, Leonard WJ: Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995, 2(3):223-238.
  • [34]Niederkorn JY: The induction of anterior chamber-associated immune deviation. Chem Immunol Allergy 2007, 92:27-35.
  • [35]Rieck J: The pathogenesis of glaucoma in the interplay with the immune system. Invest Ophthalmol Vis Sci 2013, 54(3):2393-2409.
  • [36]He H, Yang P, Jiang L, Zhang J, Zhao C, Chen L, Lin X, Zhou H, Kijlstra A: Upregulation of CD94 on CD8 + T cells in anterior chamber-associated immune deviation. BMC Immunol 2008, 9:53. BioMed Central Full Text
  • [37]Takeuchi M, Alard P, Streilein JW: TGF-beta promotes immune deviation by altering accessory signals of antigen-presenting cells. J Immunol 1998, 160(4):1589-1597.
  • [38]Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW, Streilein JW: Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005, 115(9):2363-2372.
  • [39]John SWM, Hagaman JR, MacTaggart TE, Peng L, Smithes O: Intraocular pressure in inbred mouse strains. Invest Ophthalmol Vis Sci 1997, 38:249-253.
  • [40]Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SW: Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 2007, 179:1523-1537.
  文献评价指标  
  下载次数:98次 浏览次数:35次