期刊论文详细信息
BMC Microbiology
Expression of extra-cellular levansucrase in Pseudomonas syringae is controlled by the in planta fitness-promoting metabolic repressor HexR
Matthias S Ullrich1  Daniel Pletzer1  Gabriela Alfaro-Espinoza1  Nehaya Al-Karablieh2  Abhishek Srivastava1  Daria Zhurina1  Shaunak Khandekar1  Khaled Abdallah1  Amna Mehmood1 
[1] Molecular Life Science Research Center, Jacobs University Bremen, Campus Ring 1, Bremen 28759, Germany;Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
关键词: HexR;    Hexose metabolism;    Levansucrase;    Pseudomonas syringae;    Soybean;    Bacterial blight;    Plant pathogen;   
Others  :  1137359
DOI  :  10.1186/s12866-015-0349-0
 received in 2014-10-30, accepted in 2015-01-15,  发布年份 2015
PDF
【 摘 要 】

Background

Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight on soybean plants and enters the leaf tissue through stomata or open wounds, where it encounters a sucrose-rich milieu. Sucrose is utilized by invading bacteria via the secreted enzyme, levansucrase (Lsc), liberating glucose and forming the polyfructan levan. P. syringae PG4180 possesses two functional lsc alleles transcribed at virulence-promoting low temperatures.

Results

We hypothesized that transcription of lsc is controlled by the hexose metabolism repressor, HexR, since potential HexR binding sites were identified upstream of both lsc genes. A hexR mutant of PG4180 was significantly growth-impaired when incubated with sucrose or glucose as sole carbon source, but exhibited wild type growth when arabinose was provided. Analyses of lsc expression resulted in higher transcript and protein levels in the hexR mutant as compared to the wild type. The hexR mutant’s ability to multiply in planta was reduced. HexR did not seem to impact hrp gene expression as evidenced by the hexR mutant’s unaltered hypersensitive response in tobacco and its unmodified protein secretion pattern as compared to the wild type under hrp-inducing conditions.

Conclusions

Our data suggested a co-regulation of genes involved in extra-cellular sugar acquisition with those involved in intra-cellular energy-providing metabolic pathways in P. syringae.

【 授权许可】

   
2015 Mehmood et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317021038801.pdf 1434KB PDF download
Figure 8. 28KB Image download
Figure 7. 46KB Image download
Figure 6. 52KB Image download
Figure 5. 7KB Image download
Figure 4. 12KB Image download
Figure 3. 23KB Image download
Figure 2. 34KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Srivastava A, Zhurina D, Ullrich MS. Levansucrase and levan formation in pseudomonas syringae and related organisms. Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press 2009;213-222
  • [2]Li H, Ullrich MS: Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae. J Bacteriol 2001, 183(11):3282-3292.
  • [3]Khandekar S, Srivastava A, Pletzer D, Stahl A, Ullrich MS: The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae. BMC Microbiol 2014, 14:1471-2180. (Electronic)):79 BioMed Central Full Text
  • [4]Li H, Schenk A, Srivastava A, Zhurina D, Ullrich MS: Thermo-responsive expression and differential secretion of the extracellular enzyme levansucrase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea. FEMS Microbiol Lett 2006, 265(2):178-185.
  • [5]Schenk A, Weingart H, Ullrich MS: Extraction of high-quality bacterial RNA from infected leaf tissue for bacterial in planta gene expression analysis by multiplexed fluorescent Northern hybridization. Mol Plant Pathol 2008, 9(2):227-235.
  • [6]Lindow SE, Brandl MT: Microbiology of the phyllosphere. Appl Environ Microbiol 2003, 69(4):1875-1883.
  • [7]Budde IP, Ullrich MS: Interactions of Pseudomonas syringae pv. glycinea with host and nonhost plants in relation to temperature and phytotoxin synthesis. Mol. Plant Microbe Interact 2000, 13(9):951-961.
  • [8]Melotto M, Underwood W, He SY: Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 2008, 46:101-122.
  • [9]Dunleavy JM. Bacterial, fungal, and viral diseases affecting soybean leaves. In Soybean Diseases of the North Central Region (Wyllie TD & Scott DH, eds). American Phytopathological Society 1988;40–46
  • [10]Smirnova A, Li H, Weingart H, Aufhammer S, Burse A, Finis K, et al.: Thermoregulated expression of virulence factors in plant-associated bacteria. Arch Microbiol 2001, 176(6):393-399.
  • [11]Mansfield JW: From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol. Plant Pathol 2009, 10(6):721-734.
  • [12]Atkinson MM, Baker CJ: Alteration of plasmalemma sucrose transport in Phaseolus vulgaris by Pseudomonas syringae pv. syringae and its association with K+/H+ exchange. Phytopathology 1987, 77:1573-1578.
  • [13]Roitsch T, Gonzalez MC: Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 2004, 9(12):606-613.
  • [14]Biemelt S, Sonnewald U: Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol 2006, 163(3):307-318.
  • [15]Papp B, Teusink B, Notebaart RA: A critical view of metabolic network adaptations. HFSP J 2009, 3(1):24-35.
  • [16]Lessie TG, Phibbs PV: Alternative Pathways of Carbohydrate Utilization in Pseudomonads. Annu Rev Microbiol 1984, 38(1):359-388.
  • [17]Entner N, Doudoroff M: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 1952, 196(2):853-862.
  • [18]Portais JC, Delort AM: Carbohydrate cycling in micro-organisms: what can (13)C-NMR tell us? FEMS Microbiol Rev 2002, 26(4):375-402.
  • [19]Conway T: The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 1992, 9(1):1-27.
  • [20]Xie CH, Yokota A: Reclassification of Alcaligenes latus strains IAM 12599 T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 2005, 55:1466-5026. Print)
  • [21]Kim J, Jeon CO, Park W: Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. Microbiology 2008, 154(Pt 12):3905-3916.
  • [22]Daddaoua A, Krell T, Ramos JL: Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 2009, 284(32):21360-21368.
  • [23]del Castillo T, Duque E, Ramos JL: A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 2008, 190(7):2331-2339.
  • [24]Petruschka L, Adolf K, Burchhardt G, Dernedde J, Jurgensen J, Herrmann H: Analysis of the zwf-pgl-eda-operon in Pseudomonas putida strains H and KT2440. FEMS Microbiol Lett 2002, 215(1):89-95.
  • [25]Leyn SA, Li X, Zheng Q, Novichkov PS, Reed S, Romine MF, et al.: Control of proteobacterial central carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella oneidensis. J Biol Chem 2011, 286(41):35782-35794.
  • [26]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual (2nd ed). Cold Spring Harbor Laboratory Press, New York; 1989.
  • [27]Keane P, Kerr A, New P: Crown Gall of Stone Fruit II. Identification and Nomenclature of Agrobacterium Isolates. Aust J Biol Sci 1970, 23(3):585-596.
  • [28]Palmer DA, Bender CL: Effects of Environmental and Nutritional Factors on Production of the Polyketide Phytotoxin Coronatine by Pseudomonas syringae pv. Glycinea. Appl Environ Microbiol 1993, 59(5):1619-1626.
  • [29]Bender CL, Liyanage H, Palmer D, Ullrich M, Young S, Mitchell R: Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 1993, 133(1):31-38.
  • [30]Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 1979, 76(4):1648-1652.
  • [31]Kovach ME, Phillips RW, Elzer PH, Roop RM 2nd, Peterson KM: pBBR1MCS: a broad-host-range cloning vector. Biotechniques 1994, 16(5):800-802.
  • [32]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, et al.: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166(1):175-176.
  • [33]Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP: A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212(1):77-86.
  • [34]Choi KH, Mima T, Casart Y, Rholl D, Kumar A, Beacham IR, et al.: Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl Environ Microbiol 2008, 74(4):1064-1075.
  • [35]O’Brien RD, Lindow SE: Effect of Plant Species and Environmental Conditions on Ice Nucleation Activity of Pseudomonas syringae on Leaves. Appl Environ Microbiol 1988, 54(9):2281-2286.
  • [36]King EO, Ward MK, Raney DE: Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954, 44(2):301-307.
  • [37]He SY, Huang H-C, Collmer A: Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell 1993, 73(7):1255-1266.
  • [38]Huynh T, Dahlbeck D, Staskawicz B: Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 1989, 245(4924):1374-1377.
  • [39]Sambrook J, Russell DW. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press; 2001.
  • [40]Hettwer U, Jaeckel FR, Boch J, Meyer M, Rudolph K, Ullrich MS: Cloning, nucleotide sequence, and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola. Appl Environ Microbiol 1998, 64(9):3180-3187.
  • [41]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38(Database issue):D211-222.
  • [42]Dulla G, Marco M, Quinones B, Lindow S: A closer look at Pseudomonas syringae as a leaf colonist—the pathogen P. syringae thrives on healthy plants by employing quorum sensing, virulence factors, and other traits. ASM News 2005, 71:469-475.
  • [43]Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffiere A, et al.: The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2008, 2(3):321-334.
  • [44]Rojo F: Repression of transcription initiation in bacteria. J Bacteriol 1999, 181(10):2987-2991.
  • [45]Mercier J, Lindow SE: Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 2000, 66(1):369-374.
  • [46]Kinkel LL, Wilson M, Lindow SE: Effect of sampling scale on the assessment of epiphytic bacterial populations. Microb Ecol 1995, 29(3):283-297.
  • [47]Hirano SS, Upper CD: Population Biology and Epidemiology of Pseudomonas Syringae. Annu Rev Phytopathol 1990, 28(1):155-177.
  • [48]Beattie GA, Lindow SE: The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 1995, 33:145-172.
  • [49]Benkeblia N, Shinano T, Osaki M: Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 2007, 3(3):297-305.
  • [50]Bergeron LJ, Burne RA: Roles of fructosyltransferase and levanase-sucrase of Actinomyces naeslundii in fructan and sucrose metabolism. Infect Immun 2001, 69(9):5395-5402.
  • [51]Bekers M, Upite D, Kaminska E, Grube M, Laukevics J, Vina I, et al.: Fructan Biosynthesis by Intra- and Extracellular Zymomonas mobilis Levansucrase after Simultaneous Production of Ethanol and Levan. Acta Biotechnol 2003, 23(1):85-93.
  • [52]Lee KJ, Lefebvre M, Tribe DE, Rogers PL: High productivity ethanol fermentations with Zymomonas mobilis using continuous cell recycle. Biotechnol Lett 1980, 2(11):487-492.
  • [53]Weimberg R, Doudoroff M: The oxidation of L-arabinose by Pseudomonas saccharophila. J Biol Chem 1955, 217(2):607-624.
  • [54]Palleroni NJ, Contopoulou R, Doudoroff M: Metabolism of carbohydrates by Pseudomonas saccharophila. II. Nature of the kinase reaction involving fructose. J Bacteriol 1956, 71(2):202-207.
  • [55]Berrios-Rivera SJ, Bennett GN, San KY: Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab Eng 2002, 4(3):217-229.
  • [56]Wolfe AJ: The acetate switch. Microbiol Mol Biol Rev 2005, 69(1):12-50.
  • [57]Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119.
  • [58]Bond DR, Russell JB: Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion. Microbiology 2000, 146(3):687-694.
  • [59]Russell JB: The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 2007, 13(1–3):1-11.
  • [60]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  文献评价指标  
  下载次数:84次 浏览次数:36次