期刊论文详细信息
BMC Microbiology
The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae
Matthias S Ullrich2  Antje Stahl2  Daniel Pletzer2  Abhishek Srivastava1  Shaunak Khandekar2 
[1] Current Address: Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, Stechlin, 16775, Germany;Molecular Life Sciences Research Center, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
关键词: Evolution;    Levan;    Exopolysaccharides;    Expression;    Levansucrase;    Pseudomonas syringae;   
Others  :  1141536
DOI  :  10.1186/1471-2180-14-79
 received in 2014-01-22, accepted in 2014-03-19,  发布年份 2014
PDF
【 摘 要 】

Background

Pseudomonas syringae pv. glycinea PG4180 is an opportunistic plant pathogen which causes bacterial blight of soybean plants. It produces the exopolysaccharide levan by the enzyme levansucrase. Levansucrase has three gene copies in PG4180, two of which, lscB and lscC, are expressed while the third, lscA, is cryptic. Previously, nucleotide sequence alignments of lscB/C variants in various P. syringae showed that a ~450-bp phage-associated promoter element (PAPE) including the first 48 nucleotides of the ORF is absent in lscA.

Results

Herein, we tested whether this upstream region is responsible for the expression of lscB/C and lscA. Initially, the transcriptional start site for lscB/C was determined. A fusion of the PAPE with the ORF of lscA (lscBUpNA) was generated and introduced to a levan-negative mutant of PG4180. Additionally, fusions comprising of the non-coding part of the upstream region of lscB with lscA (lscBUpA) or the upstream region of lscA with lscB (lscAUpB) were generated. Transformants harboring the lscBUpNA or the lscBUpA fusion, respectively, showed levan formation while the transformant carrying lscAUpB did not. qRT-PCR and Western blot analyses showed that lscBUpNA had an expression similar to lscB while lscBUpA had a lower expression. Accuracy of protein fusions was confirmed by MALDI-TOF peptide fingerprinting.

Conclusions

Our data suggested that the upstream sequence of lscB is essential for expression of levansucrase while the N-terminus of LscB mediates an enhanced expression. In contrast, the upstream region of lscA does not lead to expression of lscB. We propose that lscA might be an ancestral levansucrase variant upstream of which the PAPE got inserted by potentially phage-mediated transposition events leading to expression of levansucrase in P. syringae.

【 授权许可】

   
2014 Khandekar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327075057234.pdf 1765KB PDF download
Figure 6. 54KB Image download
Figure 5. 45KB Image download
Figure 4. 129KB Image download
Figure 3. 57KB Image download
Figure 2. 63KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD: Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012, 13:614-629.
  • [2]Young J, Saddler G, Takikawa Y: Names of plant pathogenic bacteria, 1864–1995. Rev Plant Pathol 1996, 75:721-736.
  • [3]Kvitko BH, Park DH, Velásquez AC, Wei C-F, Russell AB, Martin GB, Schneider DJ, Collmer A: Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III Secretion effector genes reveal functional overlap among effectors. PLoS Pathog 2009, 5:e100388.
  • [4]Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou J-M: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 2010, 7:290-301.
  • [5]Huynh T, Dahlbeck D, Staskawicz B: Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 1989, 245:1374-1377.
  • [6]Denny TP: Involvement of bacterial polysaccharides in plant pathogenesis. Annu Rev Phytopathol 1995, 33:173-197.
  • [7]Osman SF, Fett WF, Fishman ML: Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea. J Bacteriol 1986, 166:66-71.
  • [8]Gross M, Rudolph K: Studies on the extracellular polysaccharides (EPS) produced in vitro by Pseudomonas phaseolicola I. Indications for a polysaccharide resembling alginic acid in seven P. syringae pathovars. J Phytopathol 1987, 118:276-287.
  • [9]Hettwer U, Jaeckel FR, Boch J, Meyer M, Rudolph K, Ullrich MS: Cloning, nucleotide sequence, and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola. Appl Env Microbiol 1998, 64:3180-3187.
  • [10]Li H, Ullrich MS: Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae. J Bacteriol 2001, 183:3282-3292.
  • [11]Schenk A, Berger M, Keith LM, Bender CL, Muskhelishvili G, Ullrich MS: The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster. J Bacteriol 2006, 188:8013-8021.
  • [12]Sohn KH, Jones JDG, Studholme DJ: Draft genome sequence of Pseudomonas syringae pathovar syringae strain FF5, causal agent of stem tip dieback disease on ornamental pear. J Bacteriol 2012, 194:3733-3734.
  • [13]Liu H, Qiu H, Zhao W, Cui Z, Ibrahim M, Jin G, Li B, Zhu B, Xie GL: Genome sequence of the plant pathogen Pseudomonas syringae pv. panici LMG 2367. J Bacteriol 2012, 194:5693-5694.
  • [14]Almeida NF, Yan S, Lindeberg M, Studholme DJ, Schneider DJ, Condon B, Liu H, Viana CJ, Warren A, Evans C, Kemen E, Maclean D, Angot A, Martin GB, Jones JD, Collmer A, Setubal JC, Vinatzer BA: A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 2009, 22:52-62.
  • [15]Studholme DJ, Ibanez SG, MacLean D, Dangl JL, Chang JH, Rathjen JP: A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics 2009, 10:395. BioMed Central Full Text
  • [16]Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S: Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PloS One 2010, 5:e10224.
  • [17]Qi M, Wang D, Bradley CA, Zhao Y: Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PloS One 2011, 6:e16451.
  • [18]Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M: Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PloS One 2011, 6:e27297.
  • [19]Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Aken SEV, Feldblyum TV, D’Ascenzo M, et al.: The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 2003, 100:10181-10186.
  • [20]Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, Daugherty SC, DeBoy R, Durkin AS, Giglio MG, Madupu R, Nelson WC, Rosovitz MJ, Sullivan S, Crabtree J, Creasy T, Davidsen T, Haft DH, Zafar N, Zhou L, Halpin R, Holley T, Khouri H, Feldblyum T, White O, Fraser CM, Chatterjee AK, Cartinhour S, Schneider DJ, Mansfield J, et al.: Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 2005, 187:6488-6498.
  • [21]Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE: Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 2005, 102:11064-11069.
  • [22]Visnapuu T, Mäe A, Alamäe T: Hansenula polymorpha maltase gene promoter with sigma 70-like elements is feasible for Escherichia coli-based biotechnological applications: Expression of three genomic levansucrase genes of Pseudomonas syringae pv. tomato. Process Biochem 2008, 43:414-422.
  • [23]Li H, Schenk A, Srivastava A, Zhurina D, Ullrich MS: Thermo-responsive expression and differential secretion of the extracellular enzyme levansucrase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea. FEMS Microbiol Lett 2006, 265:178-185.
  • [24]Srivastava A, Al-Karablieh N, Khandekar S, Sharmin A, Weingart H, Ullrich MS: Genomic distribution and divergence of levansucrase-coding genes in Pseudomonas syringae. Genes 2012, 3:115-137.
  • [25]Del Castillo T, Ramos JL, Rodríguez-Herva JJ, Fuhrer T, Sauer U, Duque E: Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 2007, 189:5142-5152.
  • [26]Rickwood D, Hames BD: Gel Electrophoresis of Nucleic Acids: A Practical Approach. Oxford: IRL press; 1990.
  • [27]Schagger H, Cramer WA, Vonjagow G: Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 1994, 217:220-230.
  • [28]Wittig I, Beckhaus T, Wumaier Z, Karas M, Schägger H: Mass estimation of native proteins by blue native electrophoresis. Mol Cell Proteomics MCP 2010, 9:2149-2161.
  • [29]Geier G, Geider K: Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 1993, 42:387-404.
  • [30]Smits THM, Rezzonico F, Duffy B: Evolutionary insights from Erwinia amylovora genomics. J Biotechnol 2011, 155:34-39.
  • [31]Sambrook J: Molecular Cloning: A Laboratory Manual, Third Edition. 3rd edition. Cold Spring Harbour, New York: Cold Spring Harbor Laboratory Press; 2001.
  • [32]Bender CL, Liyanage H, Palmer D, Ullrich M, Young S, Mitchell R: Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 1993, 133:31-38.
  • [33]Teverson DM: Genetics of Pathogenicity and Resistance in the Halo-Blight Disease of Beans in Africa. United Kingdom: University of Birmingham, Birmingham; 1997. [Ph.D. thesis]
  • [34]Loper J, Lindow S: Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 1987, 77:1449-1454.
  • [35]Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 1979, 76:1648-1652.
  • [36]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166:175-176.
  • [37]Schenk A, Weingart H, Ullrich MS: Extraction of high-quality bacterial RNA from infected leaf tissue for bacterial in planta gene expression analysis by multiplexed fluorescent Northern hybridization. Mol Plant Pathol 2008, 9:227-235.
  • [38]Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006, 1:2856-2860.
  • [39]Speicher KD, Kolbas O, Harper S, Speicher DW: Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech JBT 2000, 11:74-86.
  • [40]Granvogl B, Plöscher M, Eichacker LA: Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 2007, 389:991-1002.
  • [41]Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20:3551-3567.
  • [42]Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H: ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 2012, 40:W597-W603.
  • [43]Vencato M, Tian F, Alfano JR, Buell CR, Cartinhour S, DeClerck GA, Guttman DS, Stavrinides J, Joardar V, Lindeberg M: Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol Plant Microbe Interact 2006, 19:1193-1206.
  • [44]Mount DW: Using the Basic Local Alignment Search Tool (BLAST). In Bioinformatics: Sequence and Genome Analysis. 2nd edition. Cold Spring Har Protoc 2007, 7:pdb.top17.
  • [45]Winsor GL, Lam DKW, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock REW, Brinkman FSL: Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 2011, 39:D596-D600.
  文献评价指标  
  下载次数:66次 浏览次数:8次