期刊论文详细信息
BMC Nephrology
Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease
Gert Mayer4  Anton Amann3  Karl Unterkofler1  Matthias Haas1  Julian King1  Paweł Mochalski2 
[1] Breath Research Institute, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria;Institute of Nuclear Physics PAN, Radzikowskiego 152, PL-31342 Kraków, Poland;Univ.-Clinic for Anesthesia, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria;Department of Internal Medicine IV-Nephrology and Hypertension, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
关键词: Volatile organic compounds;    Uremic syndrome;    Hemodialysis;    Breath analysis;    End-stage renal disease;    Blood analysis;   
Others  :  1082716
DOI  :  10.1186/1471-2369-15-43
 received in 2013-04-09, accepted in 2014-02-28,  发布年份 2014
PDF
【 摘 要 】

Background

Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment.

Methods

Gas chromatography with mass spectrometric detection coupled with solid-phase microextraction as pre-concentration method.

Results

A total of 60 VOCs were reliably identified and quantified in blood and breath of CKD patients. Excluding contaminants, six compounds (isoprene, dimethyl sulfide, methyl propyl sulfide, allyl methyl sulfide, thiophene and benzene) changed their blood and breath levels during the hemodialysis treatment.

Conclusions

Uremic breath and blood patterns were found to be notably affected by the contaminants from the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis. Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic and have negative impact on human body functions. Further studies are required to investigate if VOCs responding to HD treatment could be used as markers for monitoring hemodialysis efficiency.

【 授权许可】

   
2014 Mochalski et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224175358135.pdf 485KB PDF download
Figure 4. 79KB Image download
Figure 2. 79KB Image download
Figure 2. 60KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 2.

Figure 4.

【 参考文献 】
  • [1]Anonymous: NKF KDOQI GUIDELINES. http://www.kidney.org/professionals/KDOQI/guideline_upHD_PD_VA/hd_rec2.htm webcite, downloaded Mar 3, 2013
  • [2]Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012, 23:1258-1270.
  • [3]Amann A, Corradi M, Mazzone P, Mutti A: Lung cancer biomarkers in exhaled breath. Expert Rev Mol Diagn 2011, 11:207-217.
  • [4]Amann A, Smith D: Breath analysis for clinical diagnosis and therapeutic monitoring. New Jersey: World Scientific; 2005.
  • [5]Miekisch W, Schubert JK, Noeldge-Schomburg GF: Diagnostic potential of breath analysis–focus on volatile organic compounds. Clin Chim Acta 2004, 347:25-39.
  • [6]Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, Ligor T, Filipiak W, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Haidenberger A, Buszewski B, Miekisch W, Schubert J, Amann A: Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9:348. BioMed Central Full Text
  • [7]Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, Rom WN, Schmitt P, Wai J: Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta 2008, 393:76-84.
  • [8]Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M, Mutti A: Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res 2005, 6:71. BioMed Central Full Text
  • [9]Simenhoff ML, Burke JF, Saukkonen JJ, Ordinario AT, Doty R: Biochemical profile or uremic breath. N Engl J Med 1977, 297:132-135.
  • [10]Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT, Allardyce R, McGregor DO, Scotter JM: Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas 2011, 32:115-130.
  • [11]Ishida H, Satou T, Tsuji K, Kawashima N, Takemura H, Kosaki Y, Shiratori S, Agishi T: The breath ammonia measurement of the hemodialysis with a QCM-NH3 sensor. Biomed Mater Eng 2008, 18:99-106.
  • [12]Narasimhan LR, Goodman W, Patel CK: Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci U S A 2001, 98:4617-4621.
  • [13]Rolla G, Bruno M, Bommarito L, Heffler E, Ferrero N, Petrarulo M, Bagnis C, Bugiani M, Guida G: Breath analysis in patients with end-stage renal disease: effect of haemodialysis. Eur J Clin Invest 2008, 38:728-733.
  • [14]Davies S, Spanel P, Smith D: Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 1997, 52:223-228.
  • [15]Patterson CS, McMillan LC, Stevenson K, Radhakrishnan K, Shiels PG, Padgett MJ, Skeldon KD: Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. J Breath Res 2007, 1:026005.
  • [16]Stevenson KS, Radhakrishnan K, Patterson CS, McMillan LC, Skeldon KD, Buist L, Padgett MJ, Shiels PG: Breath ethane peaks during a single haemodialysis session and is associated with time on dialysis. J Breath Res 2008, 2:026004.
  • [17]Handelman GJ, Rosales LM, Barbato D, Luscher J, Adhikarla R, Nicolosi RJ, Finkelstein FO, Ronco C, Kaysen GA, Hoenich NA, Levin NW: Breath ethane in dialysis patients and control subjects. Free Radic Biol Med 2003, 35:17-23.
  • [18]Capodicasa E, Brunori F, De Medio GE, Pelli MA, Vecchi L, Buoncristiani U: Effect of two-hour daily hemodialysis and sham dialysis on breath isoprene exhalation. Int J Artif Organs 2007, 30:583-588.
  • [19]Trovarelli G, Brunori F, De Medio GE, Timio M, Lippi G, Pelli MA, Capodicasa E: Onset, time course, and persistence of increased haemodialysis-induced breath isoprene emission. Nephron 2001, 88:44-47.
  • [20]Capodicasa E, Trovarelli G, De Medio GE, Pelli MA, Lippi G, Verdura C, Timio M: Volatile alkanes and increased concentrations of isoprene in exhaled air during hemodialysis. Nephron 1999, 82:331-337.
  • [21]Lirk P, Bodrogi F, Raifer H, Greiner K, Ulmer H, Rieder J: Elective haemodialysis increases exhaled isoprene. Nephrol Dial Transplant 2003, 18:937-941.
  • [22]Davies S, Spanel P, Smith D: A new 'online' method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant 2001, 16:836-839.
  • [23]Capodicasa E, Trovarelli G, Brunori F, Vecchi L, Carobi C, De M, Pelli MA, Buoncristiani U: Lack of isoprene overproduction during peritoneal dialysis. Perit Dial Int 2002, 22:48-52.
  • [24]Lee HJ, Meinardi S, Pahl MV, Vaziri ND, Blake DR: Exposure to potentially toxic hydrocarbons and halocarbons released from the dialyzer and tubing set during hemodialysis. Am J Kidney Dis 2012, 60:609-616.
  • [25]Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M, Amann A: Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 2013, 138:2134-2145.
  • [26]Amann A, Miekisch W, Pleil J, Risby T, Schubert J: Methodological issues of sample collection and analysis of exhaled breath. Eur Respir Mon 2010, 49:96-114.
  • [27]Mochalski P, King J, Unterkofler K, Amann A: Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. Analyst 2013, 138:1405-1418.
  • [28]King J, Mochalski P, Kupferthaler A, Unterkofler K, Koc H, Filipiak W, Teschl S, Hinterhuber H, Amann A: Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas 2010, 31:1169-1184.
  • [29]Goerl T, Kischkel S, Sawacki A, Fuchs P, Miekisch W, Schubert JK: Volatile breath biomarkers for patient monitoring during haemodialysis. J Breath Res 2013, 7:017116.
  • [30]Mochalski P, Krapf K, Ager C, Wiesenhofer H, Agapiou A, Statheropoulos M, Fuchs D, Ellmerer E, Buszewski B, Amann A: Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings. Toxicol Mech Methods 2012, 22:502-511.
  • [31]Salerno-Kennedy R, Cashman KD: Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview. Wien Klin Wochenschr 2005, 117:180-186.
  • [32]Sharkey TD: Isoprene synthesis by plants and animals. Endeavour 1996, 20:74-78.
  • [33]Silver GM, Fall R: Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol 1991, 97:1588-1591.
  • [34]Miekisch W, Schubert JK, Vagts DA, Geiger K: Analysis of volatile disease markers in blood. Clin Chem 2001, 47:1053-1060.
  • [35]Wahl HG, Hoffmann A, Luft D, Liebich HM: Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler. J Chromatogr A 1999, 847:117-125.
  • [36]Mills GA, Walker V: Headspace solid-phase microextraction profiling of volatile compounds in urine: application to metabolic investigations. J Chromatogr B Biomed Sci Appl 2001, 753:259-268.
  • [37]Wahl HG, Hong Q, Hildenbrand S, Risler T, Luft D, Liebich H: 4-Heptanone is a metabolite of the plasticizer di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol Dial Transplant 2004, 19:2576-2583.
  • [38]Walker V, Mills GA: Urine 4-heptanone: a beta-oxidation product of 2-ethylhexanoic acid from plasticisers. Clin Chim Acta 2001, 306:51-61.
  • [39]Thompson-Torgerson CS, Champion HC, Santhanam L, Harris ZL, Shoukas AA: Cyclohexanone contamination from extracorporeal circuits impairs cardiovascular function. Am J Physiol Heart Circ Physiol 2009, 296:H1926-H1932.
  • [40]Sakata K, Kashiwagi K, Sharmin S, Ueda S, Irie Y, Murotani N, Igarashi K: Increase in putrescine, amine oxidase, and acrolein in plasma of renal failure patients. Biochem Biophys Res Comm 2003, 305:143-149.
  • [41]Li N, Deng C, Yin X, Yao N, Shen X, Zhang X: Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Anal Biochem 2005, 342:318-326.
  • [42]Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J: TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev 2010, 19:182-195.
  • [43]Sponring A, Filipiak W, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J: Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark 2010, 7:153-161.
  • [44]Daniewska-Michalska D, Motyl T, Gellert R, Kukulska W, Podgurniak M, Opechowska-Pacocha E, Ostrowski K: Efficiency of hemodialysis of pyrimidine compounds in patients with chronic renal failure. Nephron 1993, 64:193-197.
  文献评价指标  
  下载次数:59次 浏览次数:33次