期刊论文详细信息
BMC Microbiology
Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa
Anton Amann2  Jakob Troppmair3  Markus Nagl1  Helmut Wiesenhofer2  Clemens Ager2  Anna Filipiak2  Maria Magdalena Baur2  Andreas Sponring2  Wojciech Filipiak2 
[1] Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Fritz-Preglstraße 3, Innsbruck, A-6020, Austria;Univ. Clinic for Anesthesia, Innsbruck Medical University, Anichstr. 35, Innsbruck, A-6020, Austria;Daniel-Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innrain 66, A-6020, Innsbruck, Austria
关键词: Pseudomonas aeruginosa;    Staphylococcus aureus;    Volatile metabolites;    Multibed sorption tubes;    Adsorptive enrichment;    In vitro headspace sampling;    Breath analysis;    Gas chromatography mass spectrometry (GCMS);    Volatile organic compounds (VOCs);   
Others  :  1221869
DOI  :  10.1186/1471-2180-12-113
 received in 2012-02-24, accepted in 2012-06-20,  发布年份 2012
PDF
【 摘 要 】

Background

The routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs).

Results

Headspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole).

Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml].

Conclusions

The results obtained provide strong evidence that the detection and perhaps even identification of bacteria could be achieved by determination of characteristic volatile metabolites, supporting the clinical use of breath-gas analysis as non-invasive method for early detection of bacterial lung infections.

【 授权许可】

   
2012 Filipiak et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804060738339.pdf 1042KB PDF download
Figure 3. 42KB Image download
Figure 2. 31KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Madigan TM, Martinko JM, Dunlap PV, Clark DP: Brock Biology of Microorganisms. 12th edition. Pearson Education Inc., San Francisco; 2009.
  • [2]Goering R, Dockrell H, Zuckermann M, Wakelin D, Roitt I, Mims C, Chiodini P (Eds): Mims' Medical Microbiology. Elsevier, Philadelphia; 2008.
  • [3]Gibson RL, Burns JL, Ramsey BW: Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003, 168(8):918-951.
  • [4]Bercault N, Boulain T: Mortality rate attributable to ventilator-associated nosocomial pneumonia in an adult intensive care unit: a prospective case–control study. Crit Care Med 2001, 29(12):2303-2309.
  • [5]Koulenti D, Lisboa T, Brun-Buisson C, Krueger W, Macor A, Sole-Violan J, Diaz E, Topeli A, DeWaele J, Carneiro A, et al.: Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med 2009, 37(8):2360-2368.
  • [6]Zechman JM, Aldinger S, Labows JN: Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J Chromatogr 1986, 377:49-57.
  • [7]Scholler C, Molin S, Wilkins K: Volatile metabolites from some gram-negative bacteria. Chemosphere 1997, 35(7):1487-1495.
  • [8]Eriksson A, Persson Waller K, Svennersten Sjaunja K, Haugen JE, Lundby F, Lind O: Detection of mastitic milk using a gas-sensor array system (electronic nose). Int Dairy J 2005, 15:1193-1201.
  • [9]Buszewski B, Ulanowska A, Ligor T, Jackowski M, Klodzinska E, Szeliga J: Identification of volatile organic compounds secreted from cancer tissues and bacterial cultures. J Chromatogr B Analyt Technol Biomed Life Sci 2008, 868(1–2):88-94.
  • [10]Hettinga KA, van Valenberg HJ, Lam TJ, van Hooijdonk AC: Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J Dairy Sci 2008, 91(10):3834-3839.
  • [11]Allardyce RA, Langford VS, Hill AL, Murdoch DR: Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 2006, 65(2):361-365.
  • [12]Julak J, Stranska E, Rosova V, Geppert H, Spanel P, Smith D: Bronchoalveolar lavage examined by solid phase microextraction, gas chromatography–mass spectrometry and selected ion flow tube mass spectrometry. J Microbiol Methods 2006, 65(1):76-86.
  • [13]Scotter JM, Allardyce RA, Langford VS, Hill A, Murdoch DR: The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system. J Microbiol Methods 2006, 65(3):628-631.
  • [14]Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Mark TD: On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 2008, 74(7):2179-2186.
  • [15]O’Hara M, Mayhew C: A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J Breath Res 2009, 3:027001. 027008pp
  • [16]Buhr K, Van Ruth S, Delahunty C: Analysis of volatile flavour compounds by proton transfer reaction mass spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. Int J Mass Spec 2002, 221:1-7.
  • [17]Schwarz K, Filipiak W, Amann A: Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 2009, 3(2):027002.
  • [18]Gardner JW, Craven M, Dow C, Hines EL: The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perceptron network. Meas Sci Technol 1998, 9:120-127.
  • [19]Marilley L, Casey MG: Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol 2004, 90(2):139-159.
  • [20]Turner AP, Magan N: Electronic noses and disease diagnostics. Nat Rev Microbiol 2004, 2(2):161-166.
  • [21]Syhre M, Scotter JM, Chambers ST: Investigation into the production of 2-Pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol 2008, 46(3):209-215.
  • [22]Liao CC, Lee CL, Chiang TC, Lee SC, Huang SH, Tu TC, Chen TK, Wu CH: The 13 C-urea breath test to detect Helicobacter pylori infection: a validated simple methodology with 50 mg 13C-urea. Aliment Pharmacol Ther 2002, 16(4):787-792.
  • [23]Eisenmann A, Amann A, Said M, Datta B, Ledochowski M: Implementation and interpretation of hydrogen breath tests. 2008., 2(046002)
  • [24]Hockstein NG, Thaler ER, Torigian D, Miller WT, Deffenderfer O, Hanson CW: Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings. Laryngoscope 2004, 114(10):1701-1705.
  • [25]Hanson CW, Thaler ER: Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology 2005, 102(1):63-68.
  • [26]Scott-Thomas AJ, Syhre S, Pattemore PK, Epton M, Laing R, Pearson J, Chambers ST: 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med 2010, 10:56. BioMed Central Full Text
  • [27]Mann S: Uber den Geruchsstoff von Pseudomonas aeruginosa. Arch Mikrobiol 1966, 54:184-190.
  • [28]Mann S: Quinazoline derivatives in pseudomonads. Arch Mikrobiol 1967, 56:324-329.
  • [29]Cox CD, Parker J: Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J Clin Microbiol 1979, 9(4):479-484.
  • [30]Labows JN, McGinley KJ, Webster GF, Leyden JJ: Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography- mass spectrometry. J Clin Microbiol 1980, 12(4):521-526.
  • [31]Syhre M, Chambers ST: The scent of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2008, 88(4):317-323.
  • [32]Syhre M, Manning L, Phuanukoonnon S, Harino P, Chambers ST: The scent of Mycobacterium tuberculosis–part II breath. Tuberculosis (Edinb) 2009, 89(4):263-266.
  • [33]Chambers ST, Syhre M, Murdoch DR, McCartin F, Epton MJ: Detection of 2- pentylfuran in the breath of patients with Aspergillus fumigatus. Med Mycol 2009, 47(5):468-476.
  • [34]Chambers ST, Bhandari S, Scott-Thomas A, Syhre M: Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus. Med Mycol 2011, 49(Suppl 1):S54-S61.
  • [35]Anonymous: Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005, 171(4):388-416.
  • [36]Buszewski B, Ligor T, Filipiak W, Vasconcelos MT, Pompe M, Veber M: Studing of sorptive properties of systems for selective VOCs enrichment form air sample. Toxicological and Environmental Chemistry 2007, 1:51-64.
  • [37]Wagner WP, Helmig D, Fall R: Isoprene biosynthesis in Bacillus subtilis via the methylerythritol phosphate pathway. J Nat Prod 2000, 63(1):37-40.
  • [38]Rodriguez-Concepcion M, Boronat A: Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002, 130(3):1079-1089.
  • [39]Brooks G, Carroll K, Butel J, Morse S: Jawetz, Melnick & Adelberg’s Medical Microbiology. The McGraw-Hill Companies, New York; 2007.
  • [40]Preti G, Thaler E, Hanson CW, Troy M, Eades J, Gelperin A: Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid- phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877(22):2011-2018.
  • [41]Kieronczyk A, Cachon R, Feron G, Yvon M: Addition of oxidizing or reducing agents to the reaction medium influences amino acid conversion to aroma compounds by Lactococcus lactis. J Appl Microbiol 2006, 101(5):1114-1122.
  • [42]Morgan ME, Lindsay RC, Libbey LM, Pereira RL: Identity of additional aroma constituents in milk cultures of Streptococcus Lactis var. Maltigenes. J Dairy Sci 1966, 49(1):15-18.
  • [43]Yvon M, Rijnen L: Cheese flavour formation by amino acid catabolism. Int Dairy J 2001, 11:185-201.
  • [44]Michal G: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. John Wiley and sons, Inc, New York; 1999.
  • [45]Holt JG KN, Sneath PHA, Staley JT, Williams ST (Eds): Bergey's Manual of Determinative Bacteriology. 9th edition. Lippincott, Williams and Wilkins, Philadelphia, PA, USA; 2000.
  • [46]Nosova T, Jokelainen K, Kaihovaara P, Heine R, Jousimies-Somer H, Salaspuro M: Characteristics of aldehyde dehydrogenases of certain aerobic bacteria representing human colonic flora. Alcohol Alcohol 1998, 33(3):273-280.
  • [47]Black JG: Microbiology Principles and Explorations. 7th edition. Wiley, Hoboken (NJ, USA); 2008.
  • [48]Bonnarme P, Psoni L, Spinnler HE: Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 2000, 66(12):5514-5517.
  • [49]McSweeney PLH, Sousa MJ: Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80:293-324.
  • [50]Tangerman A: Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877(28):3366-3377.
  • [51]Amarita F, Fernandez-Espla D, Requena T, Pelaez C: Conversion of methionine to methional by Lactococcus lactis. FEMS Microbiol Lett 2001, 204(1):189-195.
  • [52]Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E: Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 1999, 104(8):1107-1114.
  • [53]Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD: Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol 2001, 62(2):255-259.
  • [54]Troccaz M, Benattia F, Borchard G, Clark AJ: Properties of recombinant Staphylococcus haemolyticus cystathionine beta-lyase (metC) and its potential role in the generation of volatile thiols in axillary malodor. Chem Biodivers 2008, 5(11):2372-2385.
  • [55]Amann A, Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Denz H, Fiegl M, Hilbe W, Weiss W, et al.: Analysis of exhaled breath for screening of lung cancer patients. MEMO 2010, 3:103-112.
  • [56]Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, Ligor T, Filipiak W, Denz H, Fiegl M, et al.: Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9:348. BioMed Central Full Text
  • [57]Kushch I, Arendacka B, Stolc S, Mochalski P, Filipiak W, Schwarz K, Schwentner L, Schmid A, Dzien A, Lechleitner M, et al.: Breath isoprene - aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med 2008, 46:1011-1018.
  • [58]Schwarz K, Pizzini A, Arendacká B, Zerlauth K, Filipiak W, Schmid A, Dzien A, Neuner S, Lechleitner M, Scholl-Bürgi S, et al.: Breath acetone - aspects of normal physiology related to age and gender as determined in a PTR-MS study. J Breath Res 2009, 3:027003. 027009 pp
  • [59]Amann A, Spanel P, Smith D: Breath analysis: the approach towards clinical applications. Mini Rev Med Chem 2007, 7:115-129.
  • [60]Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, Mechtcheriakov S: Applications of breath gas analysis in medicine. Int J Mass Spectrometry 2004, 239:227-233.
  • [61]Filipiak W, Sponring A, Mikoviny T, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J: Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int 2008, 8:17. BioMed Central Full Text
  • [62]Sponring A, Filipiak W, Mikoviny T, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J: Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res 2009, 29(1):419-426.
  • [63]Sponring A, Filipiak W, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J: Analysis of volatile organic compounds (VOCs) in the headspace of NCIH1666 lung cancer cells in vitro. Cancer Biomark 2010, 7:1-9.
  • [64]Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J: TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev 2010, 19(1):182-195.
  • [65]Kleinbaum D, Kupper L, Muller A, Nizam K: Applied Regression Analysis and Other Multivariable Methods. Brooks/Cole Publishing Company, Pacific Grove (CA); 1998.
  文献评价指标  
  下载次数:37次 浏览次数:14次